Entrées par

Caractéristiques et applications des PCB en aluminium

Aluminum PCBs are a type of metal-based copper-clad laminate known for their excellent heat dissipation properties. A typical single-sided aluminum PCB consists of three layers: the circuit layer (feuille de cuivre), the insulation layer, and the metal base layer. For high-end applications, double-sided designs are also available, featuring a structure of circuit layer, insulation layer, aluminum base, insulation layer, and another circuit layer. In rare cases, multilayer boards are used, combining standard multilayer boards with insulation layers and aluminum bases.

Advantages of Aluminum PCBs

  1. Eco-Friendly: Aluminum is non-toxic and recyclable. Its ease of assembly also contributes to energy savings. For PCB suppliers, using aluminum supports environmental sustainability.

  2. Heat Dissipation: High temperatures can severely damage electronic components, so using materials that aid in heat dissipation is prudent. Aluminum effectively transfers heat away from critical components, minimizing its detrimental impact on the circuit board.

  3. Enhanced Durability: Aluminum provides a level of strength and durability that ceramic or fiberglass substrates cannot. It serves as a robust base material, reducing the likelihood of accidental damage during manufacturing, handling, and everyday use.

  4. Lightweight: Despite its remarkable durability, aluminum is surprisingly lightweight. It adds strength and resilience without adding significant weight.

Applications of Aluminum PCBs

  1. Éclairage LED: The primary application of aluminum PCBs is in LED lighting. LEDs generate significant heat during operation, and the excellent heat dissipation properties of aluminum PCBs ensure the stable functioning of LEDs, thereby enhancing the lifespan and reliability of the lighting fixtures.

  2. Électronique automobile: With the increasing degree of automotive electrification, the number and density of electronic components in vehicles are rising. The lightweight nature, excellent thermal management, and electrical performance of aluminum PCBs make them an ideal choice for automotive electronics.

  3. Renewable Energy: Aluminum PCBs play a crucial role in renewable energy sectors like solar and wind power. Par exemple, solar panels need to efficiently convert solar energy into electrical energy, and the superior heat dissipation of aluminum PCBs helps maintain the stable operation of solar cells.

  4. Power Electronics: In power electronic devices such as inverters and converters, the use of aluminum PCBs ensures stable operation under high power densities.

  5. Industrial Automation: In industrial automation control systems, the high reliability, stability, and excellent electrical performance of aluminum PCBs make them the preferred material for critical components.

Applications of Aluminum PCBs

Manufacturing Process of Aluminum PCBs

  1. Mechanical Processing:

    • Forage: While aluminum PCBs can be drilled, any burrs on the edges of the holes are unacceptable as they can affect the withstand voltage test.
    • Milling the Outline: Milling the outline is challenging. Punching the outline requires high-quality molds, which is a critical aspect of aluminum PCB production.
    • Punching: After punching the outline, the edges must be very neat, free of any burrs, and the solder mask layer on the edges should remain intact. Punching involves intricate techniques such as using a blanking die, ensuring the board does not warp more than 0.5% after the process.
  2. Avoid Scratches on the Aluminum Base:

    • The aluminum base must remain untouched throughout the process to prevent discoloration or blackening due to chemical exposure or handling. Any damage to the aluminum base is unacceptable, as re-polishing is often not permitted by customers. Protective measures, like passivation or applying protective films before and after hot air leveling (Saigner), are essential to prevent damage.
  3. High Voltage Testing:

    • Aluminum PCBs for communication power supplies require 100% high voltage testing. Customers may specify either DC or AC testing, with voltages typically around 1500V or 1600V for durations of 5 à 10 secondes. Any dirt, burrs on holes or edges, jagged lines, or damage to the insulating layer can cause fires, leakage, or breakdowns during these tests. Issues such as delamination or bubbling during high voltage testing are grounds for rejection.

Aluminum PCB Manufacturing Specifications

  1. Épaisseur de feuille de cuivre:

    • Aluminum PCBs are often used for power devices with high power densities, so the copper foil is typically thicker. For copper foil thicknesses of 3oz or more, the etching process requires precise line width compensation in the engineering design to ensure that the etched line width remains within tolerance.
  2. Protection of the Aluminum Base:

    • During the Fabrication de PCB processus, the aluminum base must be protected with a protective film to prevent damage from chemical exposure, which can tarnish the surface. This protective film is prone to damage, requiring careful handling and placement of the boards in racks throughout the process.
  3. Milling Tools:

    • Milling tools used for fiberglass boards (FR-4) have lower hardness, whereas those for aluminum PCBs require higher hardness. The milling speed for fiberglass boards is relatively high, but it must be reduced by at least two-thirds when milling aluminum PCBs.
  4. Cooling During Milling:

    • For milling fiberglass boards, the machine’s built-in cooling system is typically sufficient. Cependant, when milling aluminum PCBs, additional cooling, such as applying alcohol to the milling bit, is necessary to dissipate heat effectively.

Différence entre le PCB à haute vitesse et les PCB à haute fréquence.

PCB, ou carte de circuit imprimé, est un composant indispensable dans les produits électroniques. Différents PCB utilisés dans diverses applications présentent des caractéristiques et des avantages distincts. Parmi eux, les PCB haute fréquence et les PCB haute vitesse sont deux types spéciaux, chacun avec des applications et des avantages uniques. Dans cet article, nous présenterons les différences et les caractéristiques des PCB haute vitesse et des PCB haute fréquence.

Que sont les PCB haute vitesse?

Les PCB haute vitesse sont des cartes de circuits imprimés conçues et fabriquées en tenant compte de facteurs tels que la vitesse de transmission du signal., distance de transmission, et l'intégrité du signal. Ils sont généralement utilisés dans les applications nécessitant des hautes fréquences, grande vitesse, et transmission de données de haute précision, tels que les équipements de communication, matériel informatique, et dispositifs médicaux.

Que sont les PCB haute fréquence?

Les PCB haute fréquence sont spécialement conçus pour gérer les signaux haute fréquence. Leur conception, fabrication, et la sélection des matériaux sont optimisées pour les caractéristiques de transmission du signal haute fréquence afin de garantir la stabilité, intégrité, et faible perte pendant la transmission. Les PCB haute fréquence sont couramment utilisés dans la communication sans fil, communication par micro-ondes, communication par satellite, systèmes radar, et d'autres domaines où des exigences élevées sont imposées en matière de vitesse et de stabilité de transmission du signal. Donc, les performances des PCB haute fréquence ont un impact direct sur les performances globales du système.

Les différences entre les PCB haute vitesse et les PCB haute fréquence:

  1. Différentes applications:

PCB haute fréquence: Principalement utilisé dans des applications telles que les systèmes de communication sans fil et les systèmes radar qui nécessitent la transmission de signaux haute fréquence, avec des exigences élevées en matière de fidélité et de stabilité du signal.

PCB haute fréquence haute vitesse: On le trouve couramment dans les cartes mères d'ordinateurs, périphériques réseau, etc., prenant en charge la transmission et le traitement des données à grande vitesse pour garantir l'intégrité du signal pendant la transmission sur le PCB, éviter la distorsion et les interférences du signal.

  1. Différents matériaux utilisés:

PCB haute fréquence: Utiliser des substrats fabriqués à partir de divers matériaux à constante diélectrique, comme la fibre de verre et ses dérivés, connu pour sa faible perte diélectrique et ses propriétés électriques stables.

PCB haute fréquence haute vitesse: Utiliser des matériaux à faibles constantes diélectriques pour garantir la vitesse de transmission du signal, tout en se concentrant également sur la stabilité diélectrique et les performances d'absorption.

  1. Différentes exigences de conception:

PCB haute fréquence: Les considérations de conception incluent des facteurs de performances de transmission du signal tels que la diaphonie, atténuation, harmoniques, ainsi que des facteurs tels que l'épaisseur du panneau, pression du substrat, et précision.

PCB haute fréquence haute vitesse: La conception se concentre sur les caractéristiques des lignes de transmission, impédance, équilibre des lignes de transmission différentielles, intégrité du signal du port, diaphonie, et des mesures anti-interférences pour assurer une transmission stable et rapide du signal.

  1. Différences dans les processus de fabrication:

PCB haute fréquence: Exiger un contrôle strict de la perte de circuit, rayonnement électromagnétique, etc., en utilisant des matériaux et des procédés de haute qualité, comme la sélection de matériaux spéciaux, largeur et espacement des lignes fines, blindage électromagnétique, etc..

PCB haute fréquence haute vitesse: Les processus de fabrication impliquent une conception et des techniques complexes pour garantir une transmission rapide et stable du signal., y compris le routage, disposition de la couche de signal, conception de mise à la terre, analyse de l'intégrité du signal, etc..

  1. Différences dans les tests et la validation:

Les PCB haute fréquence nécessitent un équipement de test spécialisé pour vérifier l'intégrité du signal et l'adaptation d'impédance sur diverses plages de fréquences.. Les PCB haute vitesse nécessitent l'utilisation d'équipements avancés pour des tests approfondis d'intégrité du signal afin de valider les performances à des débits de données élevés.. Les tests des PCB multicouches se concentrent sur la fonctionnalité et les performances générales du circuit.

Conclusion

Avec l'évolution continue de la technologie de communication 5G, les exigences en matière de cartes PCB dans les produits haute fréquence augmentent. D'une part, la transmission du signal haute fréquence nécessite une perte diélectrique plus faible (Df) et constante diélectrique (Dk) pour assurer une transmission stable du signal. D'autre part, à mesure que les produits évoluent vers la miniaturisation et la standardisation, Les cartes PCB évoluent inévitablement vers des directions à couche élevée et même HDI, imposer des exigences plus élevées en matière de traitement des matériaux. Donc, que ce soit du point de vue des matériaux à haute fréquence ou à grande vitesse, éther de polyphénylène (PPO ou EPI) la résine présente des perspectives de développement prometteuses et deviendra une direction importante pour les futurs matériaux de cartes PCB haute fréquence et haute vitesse.

Qu'est-ce que le test de sonde volante de PCB?

Printed circuit board testing is a critical aspect of Assemblage PCB, allowing us to identify major circuit issues and address them promptly. There are various methods for PCBA essai, including flying probe testing, AOI testing, fixture testing, etc.. This article will delve into the details of flying probe testing for PCBs.

What is Flying Probe Testing?

Flying probe testing is an electronic circuit testing method primarily used for testing printed circuit boards (PCBS). It employs a movable probe system that essentiallyfliesover the PCB, making electrical contact with specific test points on the PCB. Ultimately, it identifies defects and verifies the electrical performance of the circuit. The flying probe testing system consists of several key components, including the probes themselves, test fixtures used to secure the PCB in place, and control software to manage the testing process.

Structural Features of PCB Flying Probe Testing

The flying probe tester is an improvement over traditional bed-of-nails testers, utilizing probes instead of a bed of nails. It features four heads with a total of eight testing probes that can move independently at high speeds on an X-Y mechanism, with a minimum testing gap of 0.2mm. Pendant l'exploitation, the unit under test (UUT) is conveyed into the testing machine via belts or other UUT transfer systems, where the probes are then fixed to make contact with test pads and vias on the PCB, thereby testing individual components on the UUT. The testing probes are connected to drivers (signal generators, alimentation électrique, etc.) and sensors (digital multimeters, comptoirs de fréquence, etc.) via a multiplexing system to test components on the UUT. While one component is being tested, other components on the UUT are electrically shielded by the probes to prevent reading interference. The flying probe tester can detect short circuits, open circuits, and component values. En plus, a camera is used during flying probe testing to aid in locating missing components and inspecting components with clear directional shapes, such as polarized capacitors.

Flying Probe Testing Capabilities

While flying probe testing can easily detect short circuits and open circuits, equipping them with special drivers enables them to test more complex parameters as well. Advanced probes can simultaneously probe and test both sides of multilayer boards, reducing the time needed for separate single-sided testing. Different architectures of flying probes can be used for various solutions, such as:

Test d'intégrité du signal: Utilizing Time Domain Reflectometry (TDR) or Time Domain Reflectometer probes along with specialized instruments, various characteristics of PCB traces used for carrying high-speed and high-frequency signals can be tested. This setup typically captures and measures signals in both time and frequency domains to characterize defects in signal paths.

Phase Difference Measurement: Using specially designed probes to send high-frequency signals between reference traces and signal traces, the phase difference between them can be measured. This test eliminates the need for separate isolation testing to measure crosstalk between traces on the PCB.

High Voltage Stress Testing: PCBs may have insulation defects that conventional electrical tests may not detect. The insulation resistance between two traces on a PCB may be high enough to pass conventional resistance testing but still lower than the requirements in specifications. To detect this, high voltage stress testing is required, using a high voltage generator, appropriate probes, and high resistance meters.

Micro Short Circuit Detection: The presence of tiny whiskers can lead to micro short circuits on the PCB. Parfois, they may burn off during high voltage stress testing, leaving behind carbonized residues on the PCB surface, forming high-resistance conductive paths. Micro short circuit detection probes apply low voltage to check the resistance between two traces on the PCB, gradually increasing the voltage to a level suitable for testing.

Kelvin DC Measurement: This is a highly precise DC measurement technique required for testing BGA and similar densely packed PCB patterns. It involves a force and sense pin in the flying probe. Kelvin connections compensate for losses in the testing probe.

Flying probe testing systems come in different sizes, with the main variable being the number of connectors the system uses. Par exemple, a tester can have up to 16 connector heads, avec 8 on the top and 8 on the bottom of the PCB. Bien sûr, the cost of the system increases proportionally with the number of connectors it utilizes.

Advantages of Flying Probe Testing

Compared to traditional bed-of-nails or ICT fixtures, flying probe testing offers several advantages:

No Fixtures Required:Unlike bed-of-nails fixtures, flying probe testing doesn’t necessitate fixture setup. This saves the cost and time typically required for setting up ICT fixtures. En fait, manufacturers can set up flying probes immediately after the PCBs come off the production line, as they have access to Gerber data. D'autre part, designing and installing ICT fixtures can take weeks.

Short and Fast Program Development: Since netlists and CAD data form the basis for generating flying probe test programs, and there are multiple open-source programs to translate this information, program development time is short and requires minimal setup time. This also means that design changes can be easily integrated.

Process Flexibility: Unlike ICT’s bed-of-nails fixtures, flying probe setups are applicable to any PCB, whereas ICT’s bed-of-nails fixtures are specific to individual PCBs and useless for another. Simple modifications to internal programs are all that’s needed to adapt them to another board.

No Need for Test Points: Since flying probe testing is conducted on bare boards, probes can utilize component pads without the need for additional test points.

Controlled Probe Contact: Flying probes can achieve precise connections at closer intervals compared to bed-of-nails. Par exemple, high-precision flying probes can achieve testing gaps as small as 5 micrometers, while ICT’s minimum gap is 0.5 millimeters. This makes them highly useful for densely populated circuit boards or for achieving broader coverage on small PCBs.

Variable Testing Solutions and Methods: Flying probe systems can offer more testing solutions than ICT or bed-of-nails. This is possible because with programmable integrated test systems, various types of flying test probes can be utilized.

High Measurement Accuracy: Specific flying probes are employed for different tests, with precise probe positioning and complementary test instruments, ensuring high measurement accuracy.

Quick Feedback: Since flying probe test results can be obtained on-site, transmitting information to the production line can help them quickly make appropriate process adjustments. De la même manière, PCB designers can receive rapid feedback during prototype design, enabling them to make necessary changes before production.

How Flying Probe Testing Works

Test de sonde volante (FPT) is typically the preferred method for small batch and prototype circuit board testing as well as PCB assembly due to its cost-effectiveness and convenience for these smaller quantities.

The main advantage lies in the ability to complete testing at speeds ranging from a few days to a few hours, depending on the complexity of the circuit board, even for larger quantities, and with high coverage of testing.

Let’s break down its operation into steps:

  1. Creating an FPT Test Program

The design aims to test the entire circuit board and is usually completed using an offline computer with an FTP test program generator application. This typically requires Gerbers, BOMs, and ECAD files. On a machine with a motherboard, define the values of the components to be tested, test points, component formats, offsets, debugging, etc., and ultimately finalize the design of the test program.

  1. Uploading the Program to the FTP Tester

The components of the circuit board to be tested are placed on a conveyor belt within the FTP tester and transported to the area where the probes are operated.

  1. Application of Electrical and Power Test Signals

These tests are conducted at probe points and then readings are taken. This process determines whether specific sections of the PCB meet the expected results (composants). Any failures or deviations from the established plan and expectations indicate defects within the unit, resulting in a test failure.

Flying probe testing is a crucial technology in the electronics industry, ensuring the quality and functionality of electronic components and systems. These tests utilize specialized equipment to perform various contact and non-contact electrical tests on printed circuit boards (PCBS), printed wiring boards (PWBs), PCB assemblies (PCBAs), individual components, and entire systems. By providing a flexible and efficient method to identify defects and validate performance, flying probe testing has become an essential tool for manufacturers and engineers.

What are the colors of PCB?

The color of a PCB typically refers to the hue of the solder mask on the board’s surface. PCB board staining pigments are a type of hardened resin, with the primary resin being colorless or nearly transparent. Vert, as with other colors, is achieved through the addition of pigments.

We employ silk-screen printing to apply colors onto the PCB. PCBs come in various colors such as green, black, bleu, yellow, purple, red, and brown. Some manufacturers have ingeniously developed PCBs in multiple colors like white and pink.

Physical Properties of PCB Colors

When selecting a PCB color, one must consider the physical properties of the PCB material. Typically composed of fiberglass and epoxy resin, PCB materials have densities, thermal conductivity coefficients, coefficients of thermal expansion, tensile strengths, and other physical attributes that directly impact performance and reliability. Different-colored PCBs may utilize varied production processes and materials, thereby exhibiting differing physical properties.

Chemical Properties of PCB Colors

In addition to physical properties, the color of a PCB also influences its chemical characteristics. PCB boards undergo heating and chemical treatments during production, and PCBs of different colors may require distinct chemical processes. This affects properties such as annealing temperature, acid and alkali resistance, and corrosion resistance. Some colored PCBs may employ more complex production processes and materials, resulting in enhanced chemical corrosion resistance.

Yellow PCB

Characteristics of Different Colored PCBs

  1. Green PCB

Green PCBs are the most popular color choice, enhancing clarity by providing a sharp contrast with white text, thus improving readability. En plus, the surface treatment of green PCBs reflects less light, aiding in reducing glare.

  1. White PCB

White PCBs present a clean and neat appearance in various settings, gaining popularity. Cependant, due to their tendency to obscure traces, white PCBs are not the top choice. Yet, the contrast with black silk-screen printing is notably distinct on white PCBs.

  1. Yellow PCB

Yellow PCBs cater swiftly to diverse requirements such as style, cleanliness, and visibility. Cependant, a significant drawback of yellow PCBs is their poor contrast with traces and silk-screen printing.

  1. Blue PCB

Blue PCBs are considered thick boards suitable for labeling due to their significant contrast in silk-screen printing. While not as attention-grabbing as green, black, or white PCBs, blue PCBs are preferred for their excellent aesthetic appeal. Installing blue PCBs on LCDs is preferable as they avoid sharp contrast edges and bright background colors.

  1. Red PCB

Due to its advantages, many PCB manufacturers are keen on adopting red PCBs. Red PCBs offer excellent visibility and clearly define the contrast of traces, avions, and blank areas. Silk-screen printing appears particularly elegant against the backdrop of red PCBs.

  1. Black PCB

Black PCBs are as popular as white PCBs. Both colors produce low contrast, facilitating easy labeling of critical components. Cependant, the primary drawbacks of black and white PCBs are the potential focal points and minor shadows, making tracing difficult. Donc, black PCBs are unsuitable for various high-temperature applications as they may cause silk-screen printing to discolor. De plus, black PCBs are a blend of cobalt and carbon, potentially resulting in poor conductivity.

Black PCB

How pcb colors are made

The color of a PCB (Circuit Circuit Bancar) is primarily achieved by applying a layer of special solder mask during the manufacturing process. Here are the general steps involved in producing PCB colors:

  1. During the manufacturing process of a PCB, a thin layer of copper foil is first laid on the substrate, forming the conductive layer of the PCB. If producing a double-sided or multilayer board, both sides or multiple layers of the PCB substrate will be covered with copper foil.

  2. Suivant, the designed PCB circuit pattern isprintedonto the metal conductor using a technique called subtractive transfer. Dans ce processus, the entire surface is covered with a layer of copper foil, and excess copper foil is removed through etching techniques to form the desired circuit pattern.

  3. After forming the circuit pattern, to separate the soldering and non-soldering parts of the PCB during soldering and prevent copper oxidation (pure copper surfaces quickly undergo oxidation reactions when exposed to air, and oxidized copper becomes a poor conductor of electricity, greatly damaging the electrical performance of the entire PCB), engineers apply a layer of solder mask on the surface of the PCB. This solder mask layer blocks the contact between copper and air, protecting the copper layer from oxidation.

  4. The color of the solder mask can be adjusted as needed. Since small text needs to be printed on the PCB, engineers typically add various colors to the solder mask to create different PCB colors. Par exemple, black, red, bleu, dark green, and dark brown are common PCB colors.

  5. After applying the solder mask, a series of post-processing steps such as hot air leveling, milling the outline, electrical testing, final inspection, etc., are required to ensure that the quality and performance of the PCB meet the requirements.

Why are most PCB green now?

The prevalence of green PCBs stems from several factors:

  1. Glass Epoxy Resin Material:

    • Historically, green was the standard color for the solder mask made from glass epoxy resin, which is commonly used in Fabrication de PCB. While other colors have been introduced, green remains the preferred choice.
  2. Contrast with White Printed Text:

    • Green PCBs offer simplicity and time efficiency for assembly workers, as scanning them is straightforward and quick due to their familiarity with the color. En plus, green creates less eye strain during scanning compared to other colors and provides contrast with white printed text on the circuit board.
  3. Military Applications:

    • Military standards have a significant influence on the preference for green PCBs. Many believe that green is highly effective for military purposes, leading to a demand for green PCBs from suppliers who also serve other clients. Par conséquent, green PCBs become surplus products for military suppliers, further reinforcing their acceptance.
  4. Exposure Rate of Solder Mask:

    • While other colors like blue, white, or brown exist, they may not offer a higher solder mask exposure rate compared to green. Darker colors tend to have higher pigment deposition, resulting in darker solder masks. White and black solder masks have high exposure rates, but green provides adequate shading for worker exposure and design tolerances.
  5. Better Machine Recognition:

    • During PCB manufacturing processes such as board fabrication and surface-mount component soldering, visual inspection is crucial. Green PCBs offer better visibility in yellow-lit environments, aiding machine recognition and calibration for tasks like solder paste application and automated optical inspection (AOI).
  6. Comfort for Workers:

    • In some manual inspection processes (although increasingly replaced by automated testing), workers may observe PCBs under strong lighting. Green PCBs are more comfortable for the eyes in such conditions.
  7. Cost Reduction:

    • Green PCBs have widespread use, enabling economies of scale in production and procurement. Standardizing on one color reduces production line costs, as bulk purchasing of the same-color solder mask lowers procurement costs. Par conséquent, green solder mask is advantageous in terms of manufacturing costs and lead times.
  8. Relative Environmental Friendliness:

    • Green PCBs are relatively environmentally friendly, as they do not release toxic gases during high-temperature recycling of waste boards. Other PCB colors, such as blue and black, contain cobalt and carbon, which pose risks of short circuits due to weaker conductivity.

En plus, darker-colored PCBs, such as those in black, purple, or blue, may increase difficulty in board inspection and present challenges in manufacturing control.

The influence of PCB color on circuit boards is multifaceted. It affects not only the cost and appearance of the PCB but also directly impacts the physical and chemical properties of the PCB materials, thereby influencing the performance and reliability of the PCB. Donc, when selecting PCB colors, it is necessary to consider a comprehensive range of factors such as the application environment, exigences, and costs of the product. Entre-temps, manufacturers need to enhance the quality and performance of PCBs through more sophisticated production processes and materials to meet the production needs of PCBs in different colors.

Le statut du substrat d'emballage dans l'industrie des PCB

If the PCB industry were a pyramid, undoubtedly, the substrate would be the gleaming jewel perched at its apex.

Firstly, it holds immense importance.

The substrate is the core material in the chip packaging process, characterized by its high density, précision, performance, miniaturization, and thinness. It, along with the die and leads, forms the chip after packaging and testing. Le Substrat IC not only provides support, dissipation de chaleur, and protection for the chip but also serves as the electronic connection between the chip and the PCB, playing a pivotallinking and enablingrole, and can even embed passive or active devices to achieve certain system functions.

Secondly, its barriers are exceptionally high.

According to the minutes of the investor survey by Xinsen Technology, newcomers in the substrate field require at least 2 à 3 years to establish a team, acquire land and build factories, complete decoration and debugging, pass large customer certifications, and ramp up production capacity. Looking at the recent projects of domestic manufacturers in substrate production, the construction phase alone takes up to 2 années, with several more years needed for capacity ramp-up. De plus, projects involving high-end substrates like FC-BGA require even higher investment amounts due to the exorbitant equipment prices. Just consider, any random substrate project easily surpasses 2 billion yuan in investment, making it afighter jetin the industry’sburning moneybattle.

Aside from raising the investment threshold, the high processing difficulty is also a core barrier in substrate production. From the perspectives of product layers, board thickness, line width and spacing, and minimum annular width, substrates tend to lean towards precision and miniaturization. De plus, with a unit size smaller than 150*150 MM, they represent a higher-end category of PCBs. Parmi eux, the line width/spacing is the core differentiation, with the minimum line width/spacing of substrates ranging from 10 à 130 micrometers, far smaller than the 50 à 1000 micrometers of ordinary multilayer rigid PCBs. Ordinary PCB factories cannot handle such high-difficulty technical tasks.

Thirdly, its market prospects are incredibly vast.

With the rapid advancement of technology in the electronics industry, terminal application products are trending towards miniaturization, intelligence, and customization, making the demand for high-end PCB products more prominent. De plus, driven by a new wave of computational power, China’s substrate supply fails to meet the robust market demand, presenting the industry chain with expansive market space.

From the global demand perspective of IC substrates, these products are primarily applied in fields such as CPUs, GPUs, and high-end servers.

Au cours des dernières années, with the widespread application of technologies like 5G, IA, et cloud computing, the demand for high-computational chips has been continuously increasing, thereby propelling the growth of substrate production value. This trend has stimulated a significant growth in the demand for chips and advanced packaging in the electronics industry, indirectly promoting the development of the global substrate industry.

In terms of market size, the Chinese substrate market reached 20.1 billion yuan in 2022, a year-on-year increase of 1.5%. According to forecasts from the China Industry Research Institute, par 2023, this market size will reach 20.7 billion yuan, with a growth rate of 3%. Simultaneously, the production volume of Chinese substrates has been increasing year by year. Dans 2022, the production reached 1.381 million square meters, an 11.73% increase year-on-year. It is expected to reach 1.515 million square meters by 2023, with a growth rate of 9.7%.

Looking at the medium to long term, the IC substrate market is expected to maintain rapid growth. According to Prismark’s forecast, par 2027, the market size of IC substrates will reach 22.286 billion US dollars, with a compound annual growth rate (CAGR) of 5.10% between 2022 et 2027. It is estimated that by 2027, the overall size of China’s IC substrate industry will reach 4.387 billion US dollars, with a CAGR of 4.60% between 2022 et 2027.

The recent surge in Chiplet packaging technology has injected new vitality into the growth of IC substrates. The rapid growth in the market size of Chiplet processor chips will drive the demand for ABF substrates. Advanced packaging technologies will increase the consumption of ABF substrates, and the introduction of 2.5/3D IC high-end technologies into products may enter mass production in the future, inevitably bringing greater growth momentum.

Fourthly, its players are industry giants.

Actuellement, IC substrate companies from Japan, Corée du Sud, and the Taiwanese region hold absolute leading positions. According to statistics from the Taiwan Printed Circuit Association, the top ten global substrate suppliers and their market shares in 2022 were as follows: Unimicron (17.7%), Nan Ya Printed Circuit Board (10.3%), Ibiden (9.7%), Samsung Electro-Mechanics (9.1%), Shinko Electric Industries (8.5%), JCET Group (7.3%), LG Innotek (6.5%), AT&S (6.1%), Daeduck Electronics (4.9%), and Compeq Manufacturing (4.7%).

The top five global BT substrate manufacturers were LG Innotek (14.2%), Samsung Electro-Mechanics (11.9%), Compeq Manufacturing (10.3%), JCET Group (9.5%), and Unimicron (7.7%). The top five global ABF substrate manufacturers were Unimicron (26.6%), Ibiden (14.6%), Nan Ya Printed Circuit Board (13.5%), Shinko Electric Industries (12.8%), and AT&S (8.0%).

Although China’s IC substrate industry started relatively late, strong players have emerged continuously. Major suppliers include Shennan Circuit, Xinsen Technology, and Zhuhai Youya, which primarily possess mass production capabilities for BT substrates. En outre, since 2019, some manufacturers primarily engaged in PCB products have also begun investing in IC substrate projects, indicating a quietly evolving industrial landscape.

En conclusion, factors such as technological difficulty, industry players, investment barriers, market prospects, and critical roles have firmly established substrates at the forefront of the industry, rightfully earning them the title of the gleaming jewel atop the PCB pyramid.

Guide de l'opération de soudure d'onde pour l'assemblage de PCB

Qu'est-ce que la soudure des vagues?

Le soudage des vagues fait référence au processus de formation d'une vague de soudure d'alliage de soudure fondu, Utilisation généralement d'une pompe électrique ou d'une pompe électromagnétique, Pour atteindre la hauteur de la vague de soudure souhaitée. Alternativement, L'azote gazeux peut être injecté dans le pot à souder pour créer la vague. Pendant la soudure des vagues, une carte de circuit imprimé (PCB) avec des composants pré-montés passe à travers l'onde de soudure, formant une forme spécifique de filet de soudure sur la surface de la soudure liquide. Ce processus, dans lequel le PCB avec des composants passe à travers l'onde de soudure à un angle spécifique et avec une certaine profondeur d'immersion pour obtenir des connexions de joint de soudure, est appelé le soudage des vagues.

Développement historique de la soudure des vagues

  1. Origine de la soudure de soudure d'onde manuelle, En tant que technologie de soudage électronique, originaire du début des années 1960. À ce moment-là, L'équipement de soudage à l'onde à guise manuelle a été largement utilisé. En raison de sa structure simple, opération complexe, et faible efficacité, L'application de l'équipement de soudage des ondes manuelles était quelque peu limitée.

  2. Contrôle d'automatisation de l'équipement de soudage des vagues au début des années 1970, L'équipement de soudure d'onde a commencé à passer à la commande d'automatisation. Avec le développement continu de la technologie électronique, L'équipement a progressivement atteint le contrôle d'automatisation, Amélioration considérable de l'efficacité de la production. Pendant cette période, Divers systèmes de contrôle automatiques pour l'équipement de soudure d'onde, y compris les PLC et les microcontrôleurs, a commencé à apparaître.

  3. Numérisation de l'équipement de soudure des vagues depuis le 21e siècle, L'équipement de soudure d'onde a progressé vers la numérisation. L'application de la technologie numérique a permis à l'équipement de soudage des vagues d'atteindre une précision plus élevée, une qualité plus stable, Efficacité de production accrue, et réduit les coûts de production. En particulier, L'application de la technologie CAO dans l'équipement de soudage des vagues a entraîné des effets de soudage plus stables et cohérents.

Le principe de travail de la soudure des vagues

Le principe fondamental de la soudure d'onde consiste à utiliser la soudure fondue pour former une onde sur la surface de soudage. Le matériau de soudure est chauffé et fondu lorsqu'il passe à travers l'onde, puis contacte la surface de soudage pour créer un joint de soudure. La clé de la soudure d'onde réside dans le contrôle de la température et de la flux de la soudure pour assurer la qualité de l'articulation.

  1. Formation de soudure fondée: Initialement, La soudure fondée est formée dans la pot à souder par pression de pompe, Création d'une forme spécifique d'onde de soudure à sa surface.

  2. Transport de la carte de circuit imprimé: La carte de circuit imprimé est transportée à travers la machine à souder des ondes sur un convoyeur à chaîne, passant par la zone de préchauffage pour assurer le contrôle de la température pendant la soudure.

  3. Processus de soudure: Alors que la carte de circuit imprimé traverse l'onde de soudure à un certain angle, ses broches ramassent la soudure de la soudure liquide, qui se solidifie pendant le refroidissement pour former des joints de soudure. L'onde de soudure assure la zone de soudure et s'étend pour remplir, faciliter le processus de soudage.

  4. Qualité de soudure: La technologie de soudage des vagues convient à la soudage d'une variété de métaux et de non-métaux, y compris l'aluminium, cuivre, acier, ainsi que les plastiques, céramique, et autres matériaux non métalliques. Il est largement utilisé en électronique, machinerie, fabrication automobile, et d'autres champs, fournir efficace, rapide, et le soudage précis pour répondre à la haute précision, haute fiabilité, et les exigences de soudage de haute qualité.

Le processus de soudure d'onde

Le processus de soudage des vagues implique les étapes suivantes:

  1. Préparation: Assurez-vous que la qualité du PCB et des composants électroniques, et effectuer les traitements de surface nécessaires tels que le nettoyage et l'élimination de l'oxyde.

  2. Application de la pâte de soudure: Appliquer la pâte de soudure aux zones de soudage appropriées sur le PCB, Couvrant généralement les surfaces de contact des épingles de composants et des coussinets PCB.

  3. Placement des composants: Montez précisément les composants électroniques sur le PCB à des emplacements prédéterminés. Cela peut être fait en utilisant des machines de pick-and-place automatisées ou des méthodes manuelles.

  4. Configuration de la machine à souder d'onde: Configurez la machine à souder des ondes en fonction des exigences et spécifications de soudage, y compris la température de soudage, hauteur de vague, zone de préchauffage, et vitesse de soudure.

  5. Processus de soudure: Déplacez le PCB assemblé dans le système de convoyeur vers la zone des ondes de soudure. La soudure fondée dans la zone des vagues entre en contact avec les coussinets de PCB et les épingles de composants, Former des joints de soudure.

  6. Refroidissement et solidification: Une fois le PCB quitte la zone des ondes de soudure, Les joints de soudure sont rapidement refroidis et solidifiés grâce à un processus de refroidissement, Établir des connexions de soudure stables.

  7. Inspection et contrôle de la qualité: Inspectez et effectuez des vérifications de contrôle qualité sur le PCB soudé, y compris l'inspection visuelle, Test de rayons X, et les tests de fiabilité conjointe de soudure, Pour s'assurer que la qualité de la soudure répond aux exigences.

Guide de fonctionnement pour l'équipement de soudage des vagues

  1. Préparer le soudage des vagues

(1) Allumez l'interrupteur d'alimentation principal en fonction du calendrier de fonctionnement de l'équipement et contrôlez le temps d'interrupteur de pot de soudure via la valve électromagnétique à temps.

(2) Vérifiez si l'indicateur de température du pot à souder fonctionne correctement: Mesurez la température à environ 15 mm en dessous et au-dessus du niveau de liquide du pot à souder avec un thermomètre, et assurer que la température de réglage réelle reste dans une plage de ± 5 ° C.

(3) Vérifiez le fonctionnement du coupe-plomb: Réglez la hauteur de la tête de coupe en fonction de l'épaisseur du PCBA, Visant des longueurs de broches de composant entre 1.4 à 2,0 mm.

(4) Vérifiez l'alimentation normale de flux: Verser le flux dans le flux, ajuster la soupape d'entrée d'air, et activer le fluxer pour vérifier la moussiation ou la pulvérisation de flux. Ajustez le rapport de flux pour répondre aux exigences.

(5) Vérifiez la hauteur du niveau de la soudure; S'il est inférieur à 12-15 mm du pot à souder, Ajouter une soudure rapidement. Ajouter la soudure en lots, ne dépassant pas 10 kilogrammes à chaque fois.

(6) Nettoyez la sombre de la soudure de la surface de la soudure, et ajouter un antioxydant après le nettoyage.

(7) Réglez l'angle du rail de transport: Ajustez la largeur totale du rail en fonction de la largeur totale des PCBA à souder, assurer une force de serrage modérée. Réglez la pente de rail en fonction de la densité de broche des composants soudés.

  1. Processus de démarrage pour le soudage des vagues

(1) Allumez l'interrupteur de flux, Réglage de l'épaisseur de la plaque de réglage en mousse à la moitié de “l” Pendant le moussage. Pour pulvérisation, Assurez-vous que la carte est symétrique, avec un volume de pulvérisation modéré, Éviter de préférence la pulvérisation sur les surfaces des composants.

(2) Réglez le flux d'air du couteau à air pour permettre au flux excédentaire sur la planche de couler dans la rainure en mousse, Empêcher des gouttes sur le préchauffeur qui pourraient provoquer un feu.

(3) Allumez l'interrupteur de transport et ajustez la vitesse de transport à la valeur souhaitée.

(4) Allumez les ventilateurs de refroidissement.

  1. Procédure de soudage après les ondes

(1) Éteignez les commutateurs du préchauffeur, vague de pot à souder, fluxier, transport, ventilateurs de refroidissement, et coupe-plomb.

(2) Pendant l'exploitation, Remplacez le flux dans la rainure en mousse toutes les deux semaines et mesurez-la régulièrement.

(3) Après l'arrêt, Nettoyez soigneusement la machine à souder des vagues et les griffes, tremper les buses dans un solvant de nettoyage.

Soudure d'onde

Avantages et inconvénients de la soudure des vagues

Avantages:

Grande efficacité: Le soudage des ondes peut souder simultanément un grand nombre de composants à travers, Augmentation de l'efficacité de la production et de la production.

Qualité du soudage: Par un contrôle strict des paramètres de soudage tels que la température, temps de soudure, et flux de flux de soudure, Le soudage des vagues assure une qualité de soudage stable.

Faible coût: Le soudage des ondes peut utiliser des composants et des équipements standardisés, Réduire les coûts de production.

Désavantage:

Limitations des composants: Le soudage d'onde ne peut que souder les composants à travers le trou et ne peut pas souder les composants de montage de surface.

Limitations de grande taille: Le soudage d'onde nécessite que le PCB soit incliné sur la palette de soudure, Il y a donc certaines limites sur la taille et la forme du PCB.

Difficulté de maintenance: Les machines à souder d'ondes nécessitent un entretien et un nettoyage réguliers, qui peut être difficile.

Applications de la soudure des vagues

La technologie de soudage des vagues a été largement appliquée dans divers produits électroniques, y compris l'électronique grand public, équipement de communication, ordinateur, Et plus. Voici les principaux domaines d'application de la soudure des vagues:

● Appareils ménagers: Le soudage des vagues est devenu la principale technologie de soudage dans la fabrication d'appareils électroménagers, y compris les téléviseurs, DVD, stéréos, Et plus.

● Electronique automobile: La technologie de soudage des vagues a été appliquée dans des produits électroniques automobiles, y compris les systèmes de divertissement dans les véhicules, Systèmes de contrôle de la sécurité, etc., Amélioration de la fiabilité et de la sécurité des produits électroniques automobiles.

● Équipement de communication: La technologie de soudage des vagues a été largement utilisée dans les équipements de communication tels que les stations de base, routeurs, etc., activer les conceptions de circuits à haute densité et à grande vitesse.

● Contrôle industriel: La technologie de soudage des vagues a été appliquée dans le domaine du contrôle industriel, y compris les PLC, ordinateurs industriels, etc., Amélioration de la fiabilité et de la stabilité de l'équipement.

Développement futur de la soudure des vagues

Avec la tendance de la miniaturisation et des produits électroniques à haute densité, La technologie de soudage des vagues innove et se développe continuellement. Voici les directions de développement futurs de la soudure des vagues:

● Automatisation accrue: Le niveau d'automatisation des machines à souder des ondes continuera d'augmenter, y compris l'automatisation de l'alimentation des composants et de l'alimentation en liquide de soudure.

● Amélioration de la qualité de soudage: La qualité de soudage des machines à souder des vagues continuera de s'améliorer, y compris un contrôle plus précis des paramètres de soudage tels que la température, temps de soudage, flux de flux de soudure, etc..

● Innovation dans les matériaux de soudage: Avec la conscience environnementale croissante, Les matériaux de soudage utilisés dans les machines à souder des vagues continueront d'innover et d'améliorer, y compris l'adoption d'une soudure sans plomb et d'autres matériaux respectueux de l'environnement.

● Expansion des zones d'application: La technologie de soudage des vagues sera appliquée dans des produits plus électroniques, y compris les maisons intelligentes, L'Internet des objets (IoT), etc..

En résumé, en tant qu'important composant électronique technologie de soudage, Le soudage des ondes a été largement appliqué dans divers produits électroniques. Avec l'innovation et le développement technologiques continus, il jouera un rôle de plus en plus important à l'avenir.

Haut 8 Fabricants de PCB en Thaïlande

As an important economy in Southeast Asia, Thailand is actively attracting the investment of global Fabrication de PCB companies. At present, many PCB manufacturers from China, Corée du Sud, Japon, and the United States have established factories in Thailand. From 2022 à 2027, the compound growth rate of the global PCB output value was about 3.8%. It is expected that by 2027, the global PCB output value will reach about 98.388 billion US dollars. This global growth trend provides a good external environment for the development of the Thai PCB industry. Today we will count Top 8 Fabricants de PCB en Thaïlande.

1.Shennan Circuits Co., Ltd.

Shennan Circuits Co., Ltd. (hereinafter referred to asSCC”), fondé dans 1984 , is headquartered in Shenzhen, Guangdong, Chine. Its main manufacture facilities are located in Shenzhen, Wuxi and Nantong, Jiangsu, Chine. Its business is all over the world, and there are subsidiaries in North America and R&D sites in Europe.

Capacité de fabrication

Items Mass Échantillon
Couches 2~68L 120L
Max. Épaisseur de planche 10mm(394mil) 14mm(551mil)
Min. Width Inner Layer 2.2mil/2.2mil 2.0mil/2.0mil
Outer Layer 2.5/2.5mil 2.2/2.2mil
Inscription Same Core ±25um ±20um
Layer to Layer ±5mil ±4mil
Max. Épaisseur de cuivre 6Oz 30Oz
Min. Drill Hole Dlameter Mécanique ≥0.15mm(6mil) ≥0.1mm(4mil)
Laser 0.1mm(4mil) 0.050mm(2mil)
Max. Taille (Finish Size) Line-card 850mmX570mm 1000mmX600mm
Backplane 1250mmX570mm 1320mmX600mm
Rapport hauteur/largeur (Terminer le trou) Line-card 20:1 28:1
Backplane 25:1 35:1
Matériel FR4 EM827, 370HEURE, S1000-2, IT180A, EM825, IT158, S1000 / S1155, R1566W, EM285, TU862HF
High Speed Megtron6, Megtron4, Megtron7,TU872SLK, FR408HR,N4000-13 Series,MW4000,MW2000,TU933
High Frequency Ro3003, Ro3006, Ro4350B, Ro4360G2, Ro4835, CLTE, Genclad, RF35, FastRise27
Others Polyimide, Tk, LCP, BT, C-ply, Fradflex, Omega , ZBC2000,
Finition de surface HASK, Accepter, Immersion Tin, OSP, Immersion Silve, Gold Finger, Electroplating Hard Gold/Soft Gold, Selective OSPENEPIG

2.Kinwong Electronics

Kinwong Electronics

Établi dans 1993, Jingwang Electronics is a world’s leading high -tech enterprise developing, producing and selling high -tech research and development, production and sales of high -end electronic materials. Establish 11 offices worldwide to provide FAE localized instant service.

Kinwong’s products cover conventional PCB, Flex PCB, Metal Base PCB, Rigid-Flex PCB, HDI PCB, High Layer Count PCB, Substrate Like PCBRF PCB, Copper Inlay, etc.. We are one of the few domestic manufacturers that covers rigid circuit boards, flexible circuit boards and metal base circuit boards. Kinwong provides customers with competitive, reliable products, solutions and services in the fields of Automotive, Telecom, Computing, Smart Terminal, Industriel & Médical, Power Supply and Consumer.

Conventional circuit board manufacturing ability

Nombre de couches: 2L/4L/6L/8L/10L
Max. Delivery Panel Size: 699mm×594mm
Max. Poids du cuivre (Inner/Outer Layer): 12oz
Max.Board Thickness: 5.0MM
Max. Rapport hauteur/largeur: 15:1
Finition de surface: LF-HASL, Accepter, Imm-Ag, Imm-Sn, OSP, ENEPIG, Gold Finger

3.Shengyi Electronics Co., Ltd.

Shengyi Electronics Co., Ltd. a été établi dans 1985. It is headquartered in Dongguan City, Province du Guangdong. It is a national high -tech enterprise specializing in high -precision, high density, and high -quality printing circuit board. Shengyi Electronics provides customers with a one -stop printing circuit board solution, which is widely used in the fields of communication equipment, voitures, aerospace and other fields.

Technology capability

Shengyi Electronics

4.APCB Electronics (Thaïlande)

Apcb inc. Fondé en août 1981, it is a multi -layer PCB factory located in Taipei, Taïwan. The main PCB projects are mainly produced by consumer electronics.
Après des années de travail acharné dans l'équipe APCB, whether it is developing new technology or investment in advanced production equipment, Nous avons réussi à élargir la capacité de production et à améliorer la qualité. En faisant ça, we can expand our product line to various applications, y compris les produits électroniques, computer -related accessories, produits de communication, etc..

Technology capability

5.Industries de circuit

Circuit Industries a été fondée dans 1990. C'est le principal fabricant de circuits imprimés (PCB) ou carte de circuit imprimé (PWB) En Thaïlande, engagé dans la fabrication de PCB; PCB en aluminium et ainsi de suite. La société a obtenu la certification suivante: Fichier UL E-115789 Circuit de circuit imprimé sûr (PCB); ISO 9001:2015 Système de gestion de la qualité; ISO 14001:2015 système de gestion de l'environnement; ISO 45001:2018 Système de gestion de la santé et de la sécurité au travail; Système de gestion de la qualité du fabricant de pièces automobiles IATF 16949:2016; et TLS 8001:2010.

Technology capability

Sujet

Small Volume

Mass Volume

Remarks

Max. Nombre de couches 10 Couches 10 Couches Through hole type only. For HDI sequential lamination Max. 6 Layer
PTH Aspect Ratio 10 : 1 8 : 1 Material Thickness : Drill diameter
Min. Taille de foret 0.15 MM 0.2 MM
Min. Épaisseur de planche (Final) 0.8 MM 0.8 MM
Max. Épaisseur de planche (Final) 3.0 MM 3.0 MM FR-4 Multilayer only
Min. Prepreg Thickness 0.075 MM 0.075 MM
Min. Finished Copper Thickness 1 Oz (35 μm.) 1 Oz (35 μm.)
Inner Layer Max. Finished Copper Thickness 2 Oz (70 μm.) 2 Oz (70 μm.)
Outer Layer Max. Finished Copper Thickness 3 Oz (105 μm.) 3 Oz (105 μm.)
Min. Line Spacing (Inner Layer) 0.1 MM (4 mil.) 0.125 MM (5 mil.) Higher Copper Thickness Requires Wider Line and Spaceing
Min. Line Spacing (Outer Layer) 0.1 MM (4 mil.) 0.125 MM (5 mil.)
Min. Annular Ring 0.125 MM (5 mil.) 0.125 MM (5 mil.)
Drill Accuracy (+/-) 35 μm. 35 μm.
Multilayer Layer Registration (+/-) 35 μm. 35 μm.
Solder Mark Registration (+/-) 75 μm. 75 μm.
Rout / Score Tolerances (+/-) 0.2 MM 0.2 MM
Blind Via YES YES Mechanical Blind Via
Blind Via Aspect Ratio 1:1 1:1 Via Plug / Filled and Capped NOT AVAILABLE
Buried Via YES YES

6.Public de la précision de l'équipe

La précision de l'équipe est la Thaïlande EMS et a plus de 20 années d'expérience dans l'industrie. La gamme de services de fabrication comprend l'approvisionnement mondial et divers types d'assemblage de production via Internet, comme l'assemblage de Tongkou, Assemblage SMT, BGA d'espacement mince, Flip puce, ÉPI (Puce à bord) Ensemble d'environnement de pièce sans poussière, DEPUIS (DE- Ionisé) Nettoyage d'eau, Encapsification des composés chimiques, Boîte de construction et emballage de vente au détail prêt à vendre.

Technology capability

●11 SMT lines in 2 factories
●Through whole auto insertion machines.
●FLIP CHIP Technology
●Chip-On-Board (ÉPI)
●Flexible Printed Circuit Assembly (FPCA)
●In line solder past inspection
●In line Automatic Optical Inspection (AOI)
●X-Ray Inspection
●DI water cleaning
●In house laser engraving
●Conformal coating eg. Spray, Dip etc.
●Potting process eg. poly urethane or epoxy etc.
●In circuit and functional test
●Static walk-in burn in chamber
●Dynamic burn in chamber
●Complete Product Assembly : Box-Build to retail packing assembly
●Failure analysis equipment
●Various logistics from order fulfillment service to warehousing services eg.

●Direct shipment to end customers, Milk run delivery in overseas market, hub for the region etc. with on line monitoring.
●Kanban and certified Lean-Sigma and IPC team
●ROHS/REACH compliance

7.Fabrication BestTech

Besttech Manufacturn Co., Ltd a été initialement établi dans 2003 et est une petite usine de service de fabricant de sous-traitance électronique. La demande de haute qualité et de virage rapide Assemblage PCB Services à Panyulan (Thaïlande) a été reconnu. Il s'agit d'un fabricant de sous-traitants au service de l'industrie de l'électronique. Il utilise une technologie conventionnelle ou hybride pour produire gratuitement des modules de montage de surface.

Technology capability

Material Type SS PCB DS PTH MULTILAYER PCB
Laminate Used FR-1, Fr-2, CEM-1, CEM-3, FR-4 CEM-3, FR-4 FR-4
Doosan, Hitachi,Isola Doosan,Shenyi, Planche King Doosan,Shenyi,Planche King
High CTI Laminate Available High CTI Laminate Available High CTI Laminate Available
Halogen Free Laminate High TG Performance Laminate High TG Performance Laminate
Upon Request Upon Request Upon Request
Overall Thickness 0.80mm to 2.00mm 0.40mm to 2.00mm , Max. 2 Couches 0.40mm to 2.00mm , Max. 4-16 Couches
Épaisseur de feuille de cuivre 35um, 70um 35um, 70um, 105um 35um, 70um ,105 um
Pattern Image Line / Spacing 0.20mm Line / Spacing 0.10mm Line / Spacing 0.10mm
Masque de soudure UV, PISR Upon Request PISR PISR
Tamura/Union/Taiyo/Coates Min. opening 0.10mm Min. opening 0.10mm
Coates, Taiyo, Peters, Vantico Coates, Taiyo, Peters, Vantico
Vert, Jaune, Bleu, Noir Vert, Jaune, Bleu, Noir
Legend UV UV UV
Min. Feature Width 0.18mm Min. Feature Width 0.18mm Min. Feature Width 0.20mm
Product dentification Week Code Printed On Legend Week Code Printed On Legend Week Code Printed On Legend
Peelablemask Maximum Tenting hole size 2.80mm Maximum Tenting hole size 2.80mm Maximum Tenting hole size 2.80mm
Fabrication Minimum Hole Size For NC Drill 0.30mm, for Punch 0.65mm Minimum Hole Size For NC Drill 0.25mm, for Punch 0.30mm Minimum Hole Size For NC Drill 0.25mm, for Punch 0.30mm
Minimum Punch Soft Tool Shelf Life 200k Minimum Punch Harden Tool Shelf Life 150k Minimum Punch Harden Tool Shelf Life 150k
Minimum Punch Harden Tool Shelf Life 150k FR-4 Not Recommended to Punch Hole FR-4 Not Recommended to Punch Hole
FR-4 Not Recommended to Punch Hole V-Cut is available V-Cut is available
V-Cut is available Chamfering is Available Chamfering is Available
Chamfering is Available
Finition de surface Electrolytic Ni/Au Plating for SS PCB Accepter Accepter
Rosin Flux Coating OSP Coating OSP Coating
OSP Coating HAL or HASL HAL or HASL
Roller Tin on SS PCB, HAL on CEM-3, FR-4 Products
Products Acceptance Criteria Follow IPC-A-600 Acceptance Criteria Follow IPC-A-600 Acceptance Criteria Follow IPC-A-600 Acceptance Criteria

8.Leadsin Technology Co.ltd

LST est un fournisseur de services de solution EMS à guichet qui intègre PCBlayout, Fabrication de PCB, PCBA solution and product design,achat de composants, Smt, Assemblage et tests de produits finis.

Nous avons une riche expérience de fabrication et une équipe technique professionnelle pour fournir un service de PCB aux clients mondiaux, Nos produits couvrent l'automobile, médical, contrôle industriel, communication, Internet des objets, électronique grand public, assurance qualité et prix abordables.

Technology capability

Nombre de couches 1-48 couches
Matériels FR4, Tg=135150170180210, cem-3, cem-1, substrat en aluminium, Ptfe, Rogers, Nelco
Copper thickness 1/2oz, 1oz, 2oz, 3oz, 4oz, 5oz
Épaisseur de planche 8-236mil (0.2-6.0MM)
Minimum line width/spacing 3/3 million (75/75um)
Minute drilling size 8 million (0.2 MM)
Min HDI laser drill size 3 million (0.067 MM)
Aperture tolerance 2 million (0.05 MM)
PTH copper thickness 1 million (25 microns)
Resistance welding color Vert, Bleu, Jaune, Blanc, Noir, Rouge
Strippable solder mask layer yes
surface treatment Saigner (ROHS), ENING, OSP, sinking silver, sinking tin, shining gold, golden fingers
Gold thickness 2-30u “(0.05-0.76um)
Blind hole/buried hole yes
V-shaped cutting yes

Detailed guide for PCBA processing

Le PCBA processing process covers the entire process from raw material procurement to finished product shipment, including SMT chip mounting, DIP plug-in processing, Tests PCBA, revêtement à trois, and finished product assembly. Each step strictly follows the process requirements to ensure the quality and performance of the final product. Dans cet article, we will detail the manufacturing process of PCBA, with the specific contents as follows.

SMT Chip Mounting Process

The process of SMT chip mounting includes: solder paste mixing → solder paste printing → SPI → mounting → reflow soldering → AOI → rework.

  1. Solder Paste Mixing

After taking the solder paste out of the refrigerator and thawing it, it is mixed manually or by machine to be suitable for printing and soldering.

  1. Impression de pâte de soudure

Place the solder paste on the steel mesh and use a scraper to print the solder paste onto the PCB pads.

  1. Spice

Spice, namely solder paste thickness detector, can detect the printing condition of solder paste, playing a role in controlling the effect of solder paste printing.

  1. Mounting

Various components are automatically mounted on the circuit board using machine equipment.

  1. Soudeur de reflux

The assembled PCB board is reflow soldered, where the solder paste is heated to become liquid through high temperature inside and then cooled and solidified to complete the soldering.

  1. AOI

AOI, namely automatic optical inspection, can scan and detect the soldering effect of the PCB board, identifying any defects.

  1. Rework

Defects identified by AOI or manual inspection are reworked.

DIP Plug-in Processing Process

The process of DIP plug-in processing includes: plug-in → soudure d'onde → trimming → post-solder processing → cleaning → quality inspection.

  1. Plug-in

Process the pin of the plug-in material and install it on the PCB board.

  1. Soudure d'onde

Pass the assembled board through wave soldering, where liquid tin is sprayed onto the PCB board, and then cooled to complete the soldering.

  1. Trimming

The pins of the soldered board need to be trimmed if they are too long.

  1. Post-solder Processing

Manual soldering of components is performed using an electric soldering iron.

  1. Cleaning

After wave soldering, the board may be dirty and requires cleaning using cleaning solution and washing tank, or by using a cleaning machine.

  1. Inspection de qualité

Inspect the PCB board, and defective products need to be reworked before qualified products can proceed to the next process.

Tests PCBA

PCBA testing includes ICT testing, FCT testing, aging testing, tests de vibration, etc..

PCBA testing is a comprehensive process, and the testing methods adopted vary depending on the product and customer requirements. ICT testing checks the soldering of components and the continuity of circuits, while FCT testing examines the input and output parameters of the PCBA board to ensure compliance with requirements.

PCBA Three-proof Coating

The process of PCBA three-proof coating includes: brushing Side A → air drying → brushing Side B → room temperature curing. The spraying thickness is 0.1mm to 0.3mm. All coating operations should be carried out under conditions of not less than 16°C and relative humidity below 75%. PCBA three-proof coating is widely used, especially in harsh environments with high temperature and humidity. The coating provides excellent insulation, moisture resistance, leak resistance, shock resistance, dust resistance, corrosion resistance, anti-aging, anti-mildew, anti-loosening of components, and insulation against electric arcing. It can extend the storage time of PCBA, isolate external erosion, pollution, etc.. Parmi eux, the spraying method is the most commonly used coating method in the industry.

Final Assembly

The PCBA boards that have been tested OK after coating are assembled into the outer casing, followed by testing, and finally ready for shipment.

PCBA production is a chain of processes, and any problem in any link can have a significant impact on the overall quality. It requires strict control over each process.

Overall, PCBA processing requires meticulous attention to detail and adherence to industry standards to produce reliable and high-quality electronic devices.

Medical pcb manufacturing process

As technology rapidly advances, the medical industry’s demand for electronic products is also growing. Among the various electronic components, PCBs undoubtedly play an indispensable role in medical devices. Cependant, the requirements and standards for PCBs in the medical industry far exceed those in other sectors. Why is this so? This article will explore the high demands and standards of the medical industry for PCBs. Dans cet article, we will discuss the manufacturing process of medical PCBs.

Importance of PCBAs in Medical Devices

  1. Précision: Medical devices require a high level of precision to ensure accurate diagnosis and effective treatment. Any defects or errors in the circuit board could lead to equipment failure or provide incorrect information, posing serious risks to patientshealth.
  2. Reliability: Medical devices often need to operate in continuous working environments, placing high demands on the reliability of the circuit boards. Sudden equipment failures could result in surgery interruptions, data loss, or other medical accidents.
  3. Safety: Medical devices are directly related to patientslives and health, so the design and manufacturing of their circuit boards must comply with strict safety standards. This includes, but is not limited to, electromagnetic compatibility, overheat protection, and fire prevention.
  4. Miniaturization: With technological advancements, many medical devices are pursuing smaller sizes and higher levels of integration. This requires circuit board designs to be more compact, with finer connections between components.

Material Selection and Performance

In the surface mounting process of medical device PCBA, the selection of PCB materials is crucial. Commonly used PCB materials include FR-4 (glass fiber reinforced epoxy resin), metal substrates (such as aluminum substrates), ceramic substrates, et ainsi de suite. Different materials have different performance characteristics, and it is necessary to choose the appropriate materials according to the operating environment and requirements of medical devices.

▶ Thermal Stability: Medical devices may operate in high-temperature environments, so the thermal stability of PCBs is crucial to avoid performance issues caused by thermal expansion and contraction in high-temperature environments.

▶ Mechanical Strength: PCBs need to have sufficient mechanical strength to prevent breakage during transportation, installation, or use, ensuring the stability and durability of medical devices.

Hierarchy Structure and Design Layout

Medical devices typically require high integration, so the hierarchy structure and design layout of PCBs are particularly important. A reasonable hierarchy structure and layout design can minimize signal interference, improve circuit stability, and reliability to the maximum extent.

▶ Layered Design: For complex medical devices, multi-layer PCBs can be used to distribute different functional modules on different layers, reducing signal interference and improving the circuit’s anti-interference ability.

▶ Reasonable Wiring: A reasonable wiring design can reduce signal transmission paths, decrease signal delay, increase signal transmission speed, and avoid interference caused by signal cross-talk.

Pad Design and Process Requirements

The design of pads on the PCB and the process requirements for surface mounting are closely related. Proper pad design and process can ensure a good connection between surface-mount components and the PCB, preventing soldering defects and cold joints.

▶ Pad Size and Spacing: Different sizes and types of surface-mount components require pads of appropriate size and spacing to ensure soldering stability and reliability.

▶ Pad Shape: Different shapes of pads are suitable for different types of soldering processes, such as Surface Mount Technology (Smt) and through-hole soldering technology. Choosing the appropriate pad shape can improve soldering efficiency and quality.

Medical PCB manufacturing

Manufacturing Process of Medical PCBA

  1. Conception de PCB: Engineers use professional software to design the circuit board according to the requirements and specifications of the device. Once the design is completed, le Fabricant de PCB produces the bare board based on the design.

  2. Component Procurement: The procurement team purchases the required electronic components based on the Bill of Materials (Nager). These components may include resistors, condensateurs, inducteurs, ICS (circuits intégrés), etc..

  3. SMT Mounting: Electronic components are precisely mounted onto the PCB using a pick-and-place machine. This process is automated to ensure speed and accuracy.

  4. Soudure: Components are soldered onto the PCB using reflow soldering or other soldering methods.

  5. Tests et inspection: The completed PCBA undergoes quality inspection and functional testing using AOI (Inspection optique automatisée) equipment and other testing tools to ensure it meets design requirements and quality standards.

  6. Assembly and Encapsulation: The tested and qualified PCBA is assembled with other components (such as displays, batteries, etc.) to form a complete medical device.

Challenges and Trends in Medical Device PCBA

  1. Technological Challenges: With the continuous advancement of medical technology, the requirements for circuit boards in devices are also increasing. Par exemple, many advanced imaging systems require processing large amounts of data, placing high demands on the transmission speed and processing capabilities of circuit boards.

  2. Regulatory Compliance: The medical device market is subject to strict regulatory oversight, and manufacturers must ensure that their products comply with various safety and performance standards. This requires PCBA manufacturers to have a high sense of responsibility and expertise.

  3. Gestion de la chaîne d'approvisionnement: Due to the uncertainty of the global supply chain and issues of component shortages, medical device manufacturers need to pay more attention to supply chain management and optimization to ensure production stability and cost-effectiveness.

  4. Sustainable Development: With the increasing environmental awareness, manufacturers need to consider sustainability issues in the manufacturing process, such as using environmentally friendly materials and reducing waste generation.

Medical PCBA is closely related to patient health, so it is essential to maintain the accuracy and stability of the equipment. Donc, when choosing a medical PCB manufacturer, it is necessary to consider multiple factors. If you need medical PCBs, you can choose LST, avec 16 years of experience in medical Fabrication de PCB and a professional team worthy of trust.

Development board manufacturing and application guide

Development boards are circuit boards used for embedded system development, comprising a series of hardware components including central processing units, mémoire, input devices, output devices, data pathways/buses, and external resource interfaces. Typiquement, developers of embedded systems customize development boards according to their development needs, or users can design them on their own. Development boards serve as a means for beginners to understand and learn about both the hardware and software of systems. En plus, some development boards provide basic integrated development environments, software source code, and hardware schematics. Common types of development boards include 51, ARM, FPGA, and DSP development boards.

The role of development boards:

Development boards serve as integrated platforms that facilitate embedded system development while reducing the barriers and risks associated with it. They play the following roles:

  1. Prototyping and validation: Development boards allow developers to quickly build prototypes of embedded systems and perform joint software and hardware debugging and testing to validate the functionality and performance of the system. They also simulate real-world environments, reducing uncertainties and risks during the development process.

  2. Application development: Development boards provide different hardware platforms and software support for various application needs, making it convenient for developers to create applications. They typically offer abundant peripheral interfaces and software libraries, enabling quick implementation of various application functions.

  3. Education and training: Development boards are also used for education and training, helping students and beginners understand the principles and development methods of embedded systems. They often have low costs and are easy to use, making them suitable for practical learning and experimentation.

  4. Enhancing learning efficiency: In terms of learning, development boards can effectively improve learning efficiency and shorten the development process.

Advantages of development boards:

  1. Rapid prototyping: Development boards assist developers in quickly designing prototypes and validating their designs efficiently.
  2. Easy portability: Development boards are highly versatile and can be easily ported to other hardware platforms.
  3. Abundant peripherals: Development boards typically offer a rich array of peripherals and interfaces, catering to diverse application scenarios.
  4. Cost-saving: Compared to designing and manufacturing hardware prototypes from scratch, using development boards can save on development costs.
  5. Default system and software support: Many development boards come with default system and software support, reducing the workload for developers.

Development board-4

Components of a Development Board

A development board is a complex assembly of multiple electronic components, each of which serves a specific purpose. The primary elements can be divided into several categories:

Microcontroller/Microprocessor
This component is the development board’s brain, running software programs and controlling other peripherals.

Memory
It includes both volatile (BÉLIER) and non-volatile (Éclair, Eeprom) storage for program code storage and execution.

Input/ Output (I/O) Interfaces
These make it possible for the board to communicate with other devices or parts. Examples include digital I/O, analog inputs, and communication interfaces such as USB, Uart, and SPI.

Manufacturing Process of Development Circuit Boards

  1. Determine the requirements and functionalities of the development board: Before making a development board, it’s essential to clarify its requirements and functionalities, including the needed interfaces, operating frequency, processor type, etc.. Only with a clear understanding of the board’s functions and requirements can the subsequent design and manufacturing proceed.

  2. Design the circuit schematic: Once the requirements and functionalities of the development board are determined, the circuit schematic needs to be designed. When designing the schematic, considerations must include the connection methods between various circuit modules, specific parameters of circuit modules, etc.. Professional circuit design software like Altium Designer, Protel, etc., is typically used for this process.

  3. PCB layout design: After completing the circuit schematic design, the PCB layout design follows. PCB layout design involves arranging components and traces from the circuit schematic onto the actual circuit board. Factors to consider during layout design include the board’s dimensions, distances between components, trace routing, etc.. Professional Conception de PCB software like PADS, Altium Designer, etc., is used for this process.

  4. PCB board fabrication: Once the PCB layout design is completed, the designed PCB board needs to be fabricated. PCB board fabrication usually involves techniques like photolithography, gravure, etc., and the process needs to be conducted in a clean laboratory environment. The fabricated PCB board needs to undergo quality testing to ensure there are no issues like copper leaks, court-circuites, etc..

  5. Component soldering: After the PCB board fabrication, various components need to be soldered onto the PCB board. Soldering requires attention to factors like temperature, duration, etc., to ensure soldering quality. After soldering, testing is conducted to ensure good joint quality.

  6. Software programming: Once the hardware is completed, software programming is required. Software programming typically involves using programming languages like C, assembly language, etc., to write programs controlling various modules of the development board. The written programs need testing to ensure correctness and stability.

  7. Débogage et test: After software programming, debugging and testing are conducted. This process involves using professional testing instruments and tools like oscilloscopes, logic analyzers, etc., to ensure the normal operation of the development board’s modules.

  8. Encapsulation and production: After completing debugging and testing, the development board can be encapsulated and put into production. Encapsulation involves placing the development board into a casing to protect it from external environmental influences. Production involves mass manufacturing of the development board to meet market demand.

Résumé:

Development circuit boards play a crucial role in the electronics manufacturing field, offering excellent solutions to challenges in electronic design. If you need development circuit boards, Veuillez nous contacter.