Entrées par

Quel est le processus d'assemblage PCB?

Comme nous le savons tous, Circuit Circuit Bancar (PCB) est un composant central indispensable dans les appareils électroniques modernes, lors de l'assemblage de la carte de circuit imprimé (PCBA) est le processus de montage des composants électroniques sur les PCB et les rends connectés au circuit par le soudage et d'autres processus. Dans cet article, Nous présenterons les concepts liés au PCBA et le flux de traitement de PCBA.

Qu'est-ce que l'assemblage de PCB?

PCBA, ou assemblage de la carte de circuit imprimé, est une partie importante de la conception de circuits électroniques.
Ce n'est pas seulement une simple carte de circuit imprimé (PCB), Mais composants électroniques (comme les composants SMD) sont montés sur la carte PCB et formés en un système de circuit complet par le soudage et d'autres processus.
Le PCBA est largement utilisé dans toutes sortes de produits électroniques, comme les téléviseurs, ordinateur, téléphones portables, Électronique automobile et équipement médical, etc.. Il s'agit d'un composant central indispensable pour la connexion électrique et la transmission du signal dans ces appareils.

Composants de base des assemblages de la carte de circuit imprimé

1. Composants de la structure de base

Substrat: En matériau isolant (par exemple. FR-4 Résine époxy) qui fournit un support mécanique et une isolation électrique.
Couche de plomb et feuille de cuivre: feuille de cuivre gravée pour former un réseau de prospects pour la transmission du courant et des signaux.
Pavés de soudure et vias: Les plaquettes de soudure sont utilisées pour souder les broches des composants et les vias connectent différentes couches du circuit.
Solder Mask et Silkscreen: Le masque de soudure (revêtement vert) protège la couche externe des circuits, et l'écran à soie étiquette les emplacements des composants et les identifie.
Montage des trous et connecteurs: Pour réparer la carte ou connecter d'autres appareils.

2. Composants actifs

Circuits intégrés (IC): composants de base, fonctions logiques complexes intégrées, comme les microprocesseurs, mémoire.
Transistor (Tube à effet triode / champ): Utilisé pour l'amplification du signal, commande de commutation.
Diode: conductivité unidirectionnelle, Utilisé pour la rectification, stabilisation de tension.
Capteurs: détecter les paramètres environnementaux (par exemple. température, lumière) et les convertir en signaux électriques.
Actuateur (relais, moteur): Selon le signal de contrôle pour effectuer l'action.

3. Composants passifs

Résistance: limiter le courant, diviseur de tension et de courant.
Condensateur: stocker l'énergie électrique, filtration, couplage.
Inducteur: stockage de l'énergie magnétique, filtration, oscillation.
Transformateur: conversion de tension, correspondance d'impédance.
Oscillateur en cristal: Fournir des signaux d'horloge pour assurer un fonctionnement stable de l'équipement.

4. Composants de connexion et de protection

Connecteur: Connexion entre les conseils ou l'équipement (comme des rangées d'épingles, prises).
Fusibles: protection contre les surintensités.
Variateur / Diode de suppression transitoire: tension anti-surfacturée.
Filtre: Supprime le bruit et améliore la qualité du signal.

Le processus de base de l'assemblage PCB

Production PCBA, C'est-à-dire, PCB Bare Board via le placement des composants, plug-in, et terminer le processus de soudage. Ce processus couvre un certain nombre de procédures, y compris le traitement du placement SMT, Traitement de l'insertion de trempette, Tests PCBA, revêtement à trois, et la dernière inspection visuelle et envoi d'emballage. Chaque étape est critique et fonctionne ensemble pour assurer la qualité et les performances du PCBA.

Traitement SMT SMD

1. Baisse du conseil d'administration
Ce lien au début de la ligne de production SMT joue un rôle crucial, Il garantit que les cartes PCB peuvent être transférées sur la ligne de production de manière ordonnée et efficace, garantissant ainsi la continuité et l'efficacité de la production.

2. Impression de pâte de soudure
L'impression de pâte de soudure est un élément clé du traitement du placement SMT, qui implique l'impression précise de la pâte de soudure sur le circuit imprimé par des moyens manuels à travers le pochoir de la machine à imprimer. Cette étape nécessite non seulement une machine d'impression professionnelle (comme la table à imprimer à la main) et raclette, mais nécessite également un contrôle strict de la composition de la pâte de soudure, résolution d'impression, précision, et épaisseur et uniformité de la pâte de soudure.

3. Placement en machine
Le placement sur la machine est les composants SMD conformément au diagramme de processus ou aux exigences de BOM, Grâce à la programmation de la machine SMD ou à l'alignement manuel, Un montage précis à la carte de circuit imprimé a été imprimé avec une bonne pâte de soudure.

4.Soudeur de reflux
Dans l'impression de pâte de soudure et sur la machine après le patch, Afin de s'assurer que les composants peuvent être fermement soudés sur la carte PCB, Le soudage de reflux doit être effectué. Ce lien à travers le chauffage à haute température pour faire fondre la pâte de soudure, de sorte que les composants et les coussinets de PCB, afin de terminer le soudage.

5.Inspection AOI
L'AOI post-Farn est un lien clé de la chaîne de production. Il est via la méthode de reconnaissance graphique sera stockée dans l'image numérisée standard du système AOI et la détection réelle de l'image à titre de comparaison, afin d'obtenir les résultats des tests. Les points techniques de ce lien incluent la norme d'inspection, force de détection, Taux de détection de faux, position d'échantillonnage, Taux de couverture et angle mort. Ses éléments d'inspection couvrent un large éventail de problèmes possibles tels que les pièces manquantes, inverse, droit, soudure cassée, Mauvaises parties, Moins de boîte, jambes déformées, Travail continu et plus d'étain.

Traitement des insert de plongée

Insertion de plongeon, Également connu sous le nom d'emballage de DIP ou de technologie d'emballage en ligne à double rangée, est un processus qui emballe les puces de circuit intégrées sous la forme d'une insertion en ligne à double rangée.

1.Insertion manuelle
Dans ce lien, Le PCB passe par la rotation de la chaîne, et les travailleurs doivent insérer les pièces et les composants moulés avec précision et correctement à la position correspondante du PCB en fonction de l'instruction de travail (applicable aux composants à travers le trou).

2. Soudure d'onde
La soudure d'onde est une sorte de soudure fondu avec l'aide de la pompe, dans le réservoir de soudure pour former une forme spécifique du processus d'onde de soudure. Pendant le processus de soudage, Le PCB avec des composants insérés passe à travers la chaîne de convoyeur et passe à travers l'onde de soudure à un angle spécifique et à la profondeur d'immersion, réalisant ainsi une connexion solide des joints de soudure.

3. Tranche manuelle
Une fois la soudure d'onde terminée, La carte PCB doit être coupée manuellement. Cette étape implique des composants de plug-in de carte PCB manuels à la surface des broches exposées aud, conformément aux dispositions des instructions de fonctionnement pour la coupe. Le but de couper l'opération du pied est de s'assurer que la hauteur des épingles des composants au bon endroit, tout en évitant les dommages au corps des composants et à son pad.

4. Soudure manuelle
Dans le processus de soudage manuel, La nécessité des anomalies de soudage de la carte PCB, comme la fausse soudure, fuite de soudure, Moins de boîte, étain, etc., Pour se réparer en temps opportun. En même temps, pour les composants de l'insertion d'anomalies, comme biaisé, flottant haut, moins de pièces, mauvaise insertion, etc., doivent également être traités en conséquence pour assurer la qualité du soudage.

Traitement des insert de plongée

Traitement des insert de plongée

Lien de test

1.Test des TIC

Le test des TIC est conçu pour examiner les caractéristiques de base des composants pour assurer de bonnes performances. Pendant le processus de test, De (non-conforme) et ok (qualifié) Les produits sont placés séparément pour faciliter le traitement ultérieur. Pour les résultats des tests pour la carte de circuit imprimé OK, Les étiquettes de test TIC correspondantes doivent être apposées, et séparé de la mousse, Afin de faciliter le tube ultérieur.

2.Test FCT

Le test FCT est conçu pour vérifier de manière complète l'intégrité fonctionnelle de la carte de circuit imprimé. Dans le processus de test, De (défectueux) et ok (qualifié) strictement différencié, et sont correctement placés. Pour les circuits imprimés avec les résultats des tests OK, Ils doivent être étiquetés avec les étiquettes de test FCT appropriées et isolés de la mousse pour faciliter le suivi et la gestion ultérieurs. En même temps, Si vous devez générer un rapport de test, Vous devez vous assurer que le numéro de série du rapport correspond au numéro de série sur la carte PCB. Pour les produits NG, Ils doivent être envoyés au service d'entretien pour réparation, Et faites un bon travail d'enregistrement du rapport de maintenance des produits défectueux.

Revêtement de peinture à trois

Peinture à trois, comme une sorte de revêtement avec des fonctions spéciales, est largement utilisé dans la protection PCBA. Son rôle est de fournir une protection complète pour les composants électroniques, résister efficacement à l'érosion de l'humidité, Spray Salt et substances corrosives. En pulvérisant la peinture à trois, Il garantit non seulement que les produits fonctionnent de manière stable sous l'environnement sévère d'une humidité élevée et d'un spray élevé, mais étend également considérablement leur durée de vie.

Inspection visuelle pour l'emballage et l'expédition

Avant l'emballage et l'expédition, Une inspection manuelle doit être effectuée pour assurer la qualité du produit, La norme IPC610 est une base importante pour l'inspection, Se concentrer sur la vérification si la direction des composants sur le PCBA est correcte, comme IC, diodes, transistors, condensateurs de tantale, condensateurs et commutateurs en aluminium et ainsi de suite. En même temps, il est également nécessaire de vérifier soigneusement les défauts après le soudage, comme le court-circuit, circuit ouvert, fausses parties, Faux soudures, etc., Pour s'assurer que les produits peuvent fonctionner de manière stable et répondre aux exigences des clients.

À la recherche d'un fournisseur de services d'assemblage PCB?

LST est une usine avec plus que 20 Années d'expérience dans l'assemblage de PCB, Nous fournissons aux clients des services de fabrication électronique stables et pratiques, Fabrication clé en main à un guichet. Si vous avez un projet de fabrication, Veuillez contacter le service client, Nous vous répondrons à la première fois.

Quels sont les avantages de l'utilisation de PCB flexible?

In the realm of printed circuit boards (PCBS), flexible PCBs stand out as a unique category, complementing their traditional rigid counterparts. In a wide range of applications, flexible PCBs demonstrate capabilities that rival — and sometimes surpass — those of rigid PCBs. To explore the charm and versatility of flexible PCBs, this article offers an in-depth analysis of their various types and real-world applications.

What Is a Flexible Circuit Board?

An FPC (Flexible Printed Circuit), often referred to as asoft board,” is a member of the PCB family. Made with flexible substrates such as polyimide or polyester films, FPCs boast high wiring density, lightweight construction, thin profiles, and exceptional bendability and flexibility. These boards can endure millions of dynamic flexing cycles without damaging the circuitry, making them ideal for complex spatial layouts and three-dimensional assembly. By integrating component mounting and wiring into a single structure, FPCs achieve a level of performance that rigid PCBs often cannot match.

Basic Structure of an FPC

Copper Film (Copper Foil Substrate)

  • Feuille de cuivre: A crucial material in FPCs, copper foil is available in two types — electrolytic copper and rolled annealed (RA) copper — with common thicknesses of 1oz, 1/2oz, and 1/3oz.

  • Substrate Film: Supports the copper foil and typically comes in thicknesses of 1 mil or 1/2 mil.

  • Adhésif: Used during manufacturing to bond layers, its thickness varies depending on customer requirements.

Couverture (Protective Cover Film)

  • Cover Film: Primarily used for surface insulation, usually with thicknesses of 1 mil or 1/2 mil, applied together with adhesive layers.

  • Release Paper: Employed during manufacturing to prevent foreign matter from adhering to the adhesive before lamination, Simplifier le processus de production.

Stiffener (PI Stiffener Film)

  • Stiffener: Enhances the mechanical strength of the FPC, facilitating surface-mount assembly. Typiquement, stiffeners range from 3 mil to 9 mil in thickness and are bonded with adhesives.

  • EMI Shielding Film: Protects the internal circuits from external electromagnetic interference, ensuring the stability and reliability of electronic devices.

Types of Flexible PCBs

Types of Flexible PCBs

Types of Flexible PCBs

As a major innovation within the PCB industry, flexible PCBs not only offer exceptional performance but also come in a wide variety of types. Their versatility greatly enriches the design possibilities for electronic products and meets the demands of increasingly complex applications. Below is an overview of the most common types of flexible PCBs and their typical uses:

  1. Single-Sided PCB flexible
    Featuring a simple structure with a single conductive layer, these PCBs are cost-effective and ideal for basic applications.

  2. Double-Sided Flexible PCB
    With copper layers on both sides connected through metallized vias, double-sided flexible PCBs offer greater functionality for more complex scenarios.

  3. PCB flexible multicouche
    Built with multiple layers of copper and dielectric material stacked alternately, these PCBs achieve high elasticity while delivering superior performance.

  4. Rigid-Flex PCB
    Combining both rigid and flexible circuits into a single board, rigid-flex PCBs support high-density wiring and sophisticated layout designs.

  5. PCB flexible HDI
    Featuring high-density interconnect (HDI) designs, these boards are lightweight, compact, highly integrated, and offer excellent electrical performance.

  6. Sculptured Flexible Circuit
    Designed with variable trace thicknesses to meet specific localized requirements, these circuits are ideal for intricate electronic applications.

  7. Polymer Thick Film Flexible PCB
    Manufactured using screen-printing techniques, these low-cost flexible circuits are best suited for low-voltage applications.

  8. Dual Access/Backside Flexible PCB
    A single-sided design that allows circuit access from both sides, simplifying the layout of complex circuitry.

  9. Single-Layer Flexible FPCB
    Comprising a base layer, adhesive, and a copper layer, this straightforward structure emphasizes protection of the conductive areas.

  10. Dual Access/Backside FPCB
    Similar in structure to a single-layer FPCB but with laser-drilled openings to access the copper layer, significantly enhancing design flexibility.

Features of Flexible PCBs

  1. Flexibilité:
    Les PCB flexibles peuvent se plier et se plier sans compromettre la fonctionnalité du circuit, allowing for freedom of movement in three-dimensional spaces.

  2. Léger et mince:
    Par rapport aux PCB rigides, Les PCB flexibles sont beaucoup plus minces et plus légers.

  3. Miniaturized Design:
    Thanks to their ability to bend in 3D space, flexible PCBs enable the creation of more compact electronic products.

  4. Haute fiabilité:
    Flexible PCBs offer greater resistance to vibration and shock compared to rigid boards, enhancing overall reliability.

  5. High-Temperature Resistance:
    These PCBs can operate reliably in high-temperature environments, demonstrating outstanding thermal stability.

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

PCB flexible (FPCS) have become increasingly indispensable in modern electronics due to their unique physical properties and design advantages. Below is a detailed exploration of their core strengths:

1. Exceptional Flexibility and Spatial Adaptability

  • Bendable and Foldable Design:
    Utilizing flexible substrates such as polyimide (PI) or polyester (ANIMAL DE COMPAGNIE), FPCs can bend, fold, or even roll within three-dimensional space, breaking the two-dimensional limitations of traditional rigid PCBs. Par exemple, in foldable smartphones, FPCs are used in hinge areas, enduring hundreds of thousands of folds without failure.

  • Space Optimization:
    With thicknesses as low as 0.1 mm and weighing only 50%-70% of a rigid PCB, FPCs significantly enhance space utilization inside devices. In smartphones, FPCs seamlessly connect the mainboard to the display and camera modules, enablingzero-gapdesigns.

2. Lightweight Design and High Reliability

  • Weight Reduction and Cost Savings:
    The lightweight nature of FPCs makes them ideal for aerospace and wearable devices. Par exemple, satellite electronics systems utilizing FPCs see weight reductions of over 30%, while also minimizing the need for bulky connectors and reducing overall assembly costs.

  • Environmental Resistance:
    PI substrates withstand temperatures up to 250°C and exhibit excellent chemical and vibration resistance, making them suitable for harsh environments such as automotive engine compartments and industrial control systems.

3. Design Freedom and Integration Capabilities

  • 3D Routing:
    FPCs can route along curved surfaces, supporting innovative structural designs. In smartwatches, FPCs are integrated into the straps to flexibly connect sensors to the mainboard.

  • High-Density Integration:
    With technologies like laser drilling and fine-line patterning, FPCs can achieve line widths and spacings as small as 20μm/20μm, meeting the miniaturization demands of devices such as implantable medical equipment (Par exemple, neural stimulators) for multi-channel signal transmission.

4. Dynamic Adaptability and Durability

  • Extended Flexing Lifespan:
    Designs using serpentine routing patterns and rolled annealed (RA) copper allow FPCs to endure over 100,000 bending cycles, ideal for dynamic applications like flip phones.

  • Shock Absorption:
    Flexible substrates absorb mechanical stresses, reducing the risk of solder joint failures caused by vibrations. In automotive electronics, FPCs are used in airbag control modules to ensure signal stability even under extreme collision conditions.

5. Cost Efficiency and Manufacturing Productivity

  • Long-Term Cost Benefits:
    Although the unit cost of FPCs may be higher, their ability to reduce the need for connectors and simplify assembly processes lowers overall system costs in mass production. Par exemple, integrated FPC modules in smartphones are 15%-20% more cost-effective than traditional cable harness solutions.

  • Rapid Production Support:
    FPCs can be produced with robotic automation, supporting small-batch, multi-variety manufacturing, ideal for the fast-paced iteration cycles of consumer electronics.

Scénarios d'application typiques

  • Électronique grand public:
    Display connections and camera modules in smartphones and tablets.

  • Dispositifs médicaux:
    Implantable pacemakers and miniature diagnostic device sensor circuits.

  • Électronique automobile:
    Lightweight wiring for engine management systems and advanced driver-assistance systems (ADAS).

  • Aérospatial:
    Radiation-resistant flexible circuits for satellite antennas and UAV control systems.

Conclusion

With the rapid rise of wearable devices, flexible displays, and smart technologies, the demand for flexible PCBs is experiencing explosive growth. In an era where electronic products increasingly prioritize lightweight, thin, compact, and highly efficient designs, ultra-thin and stretchable flexible circuits are poised to unlock immense market potential and drive the next wave of advancements in electronic devices and related technologies.

Comment éliminer les revêtements de protection des PCB

Avant la production et le traitement, Un revêtement conforme protecteur est généralement appliqué à la surface d'un PCB pour le protéger des dommages environnementaux. Ce revêtement aide à prévenir l'eau, poussière, sel, et la saleté en entrant en contact avec des composants sensibles, Préservant ainsi les performances de la carte principale.

L'élimination des revêtements conformes peut être difficile en raison de leur durabilité et de leur résistance à l'usure. Si une reprise est nécessaire, L'alcool n'est pas le choix idéal pour éliminer ces revêtements. Alors que l'alcool est peu coûteux et facilement disponible, Il n'a pas la résistance au solvant pour dissoudre efficacement le revêtement et nécessite souvent un trempage prolongé pour avoir un effet. Dans cet article, Nous explorerons des méthodes efficaces pour éliminer les revêtements de protection des PCB.

Types de revêtements conformes

Il existe cinq types communs de revêtements conformes disponibles sur le marché:

  1. Résine acrylique
    Les résines acryliques se dissolvent facilement dans de nombreux solvants organiques, les rendre pratiques pour les retouches du conseil d'administration. Ils offrent une résistance chimique sélective, sécher rapidement, résister à la moisissure, Ne rétrécissez pas pendant le durcissement, et fournir une bonne résistance à l'humidité. Cependant, Ils ont une faible résistance à l'abrasion et sont sujets aux rayures, craquage, et pelage.

  2. Résine époxy
    Généralement composé de deux parties qui commencent à guérir lors du mélange, Les résines époxy offrent une excellente résistance à l'abrasion, résistance chimique, et une protection contre l'humidité décente. Cependant, Ils sont difficiles à supprimer et à retravailler. Parce que le rétrécissement du film se produit pendant la polymérisation, Une solution tampon est recommandée autour des composants de précision. Le durcissement à des températures plus basses peut aider à minimiser le retrait.

  3. Polyuréthane
    Les revêtements en polyuréthane offrent une forte humidité et une résistance chimique. En raison de leurs propriétés chimiques robustes, Les supprimer nécessite généralement des strip-teaseuses, qui peut laisser des résidus ioniques derrière. Ces résidus doivent être soigneusement nettoyés pour éviter la corrosion des plinthes. Bien que le retravail par la soudure soit possible, Cela entraîne souvent une décoloration brune qui peut affecter l'apparence du produit.

  4. Silicone
    Le silicone est généralement un composé unique qui commence à guérir lorsqu'il est exposé à l'humidité dans l'air et à une certaine température. Une fois guéri, il forme un uniforme, Couche de bien-être sur toutes les surfaces de composants ou de modules électroniques. Il convient aux environnements à haute température (>120° C), ainsi que des réglages qui nécessitent une sensibilité à l'humidité, résistance chimique, protection contre la corrosion, et propriétés antifongiques.

  5. Uréthane (Carbamate de polyuréthane)
    L'uréthane offre une forte protection, dureté, et une forte résistance au solvant. Il offre une excellente résistance à l'abrasion et une faible perméabilité de l'humidité. Tandis qu'il fonctionne bien dans des environnements froids, il ne convient pas aux applications à haute température. La plupart des revêtements d'uréthane sont difficiles ou impossibles à retravailler ou à réparer.

PCBA

Types communs de revêtements de protection et de méthodes d'élimination

  1. Méthode de solvant chimique

Types applicables:

  • Polyuréthane: Méthanol / éthylène glycol éther avec un activateur alcalin, ou toluène / xylène.

  • Acrylique: Chlorure de méthylène, chloroforme, cétones (Par exemple, acétone), γ-butyrolactone, ou acétate de butyle.

  • Silicone: Chlorure de méthylène ou solvants d'hydrocarbures spécifiques.

  • Époxy: Difficile à retirer une fois durci; pour les petites zones, Le chlorure de méthylène avec un activateur acide et un coton-tige peut être utilisé.

Procédure:
Appliquez le solvant sur la surface du revêtement. Une fois que le revêtement gonfle, Essuyez doucement avec un coton-tige ou un chiffon doux. Évitez de laisser le solvant se propager à des zones involontaires.


  1. Méthodes de retrait physique

Méthode de chaleur:

  • Outils: Souder en fer ou pistolet à air chaud.

  • Note: Contrôler soigneusement la température (Ne dépassez pas la tolérance des composants). Convient aux composants résistants à haute température. Travailler rapidement pour éviter d'endommager le stratifié.

Méthode de micro-abrasion:

  • Outils: Équipement abrasif spécialisé (Par exemple, Média de noix ou de perles de verre).

  • Note: Masque les zones environnantes pour éviter l'accumulation électrostatique. Devrait être effectué par du personnel qualifié.

Grattage mécanique:

  • Outils: Lame de rasoir ou petit couteau.

  • Mesures: Coupez un V-roove au point de soudure, Appliquer le solvant, puis soulevez le revêtement. Meilleur pour les retouches localisées.


  1. Agents de nettoyage spécialisés

Recommandation: Utilisez des agents de nettoyage respectueux de l'environnement (Par exemple, Kyzen es125a).
Méthode: Nettoyage ou trempage à ultrasons. Convient pour de grandes zones ou des PCB complexes.


  1. Méthode de remplacement localisée

Cas d'utilisation: Lorsque seuls les composants spécifiques ont besoin de remplacement.
Mesures: Utilisez un fer à souder pour chauffer et retirer le revêtement sur le composant, remplacer la pièce, nettoyer la zone, et réapplique un revêtement conforme.


Résumé

Les revêtements de protection des PCB sont des matériaux appliqués en surface conçus pour protéger les circuits imprimés de l'humidité, poussière, produits chimiques, et des températures élevées, Amélioration ainsi la fiabilité des produits. Les types communs incluent:

  • Acrylique (facile à appliquer, nécessite des solvants spécifiques pour le retrait),

  • Polyuréthane (protection solide, Difficile à supprimer, peut émettre des fumées toxiques lorsqu'elles sont chauffées),

  • Silicone (résistant à la chaleur et retravailable), et

  • Époxy (très dur une fois durci, difficile à supprimer).

Les méthodes de suppression doivent être sélectionnées en fonction du type de revêtement et peuvent inclure solvants chimiques (Par exemple, chlorure de méthylène, méthanol), méthodes physiques (chaleur, abrasion), Agents de nettoyage spéciaux, ou remplacement localisé. Prioriser toujours la sécurité et la responsabilité environnementale, et prendre soin d'éviter d'endommager le PCB ou ses composants.

Guide complet de la conception et du prototypage des PCB à 8 couches

In the field of electronics manufacturing, cartes de circuits imprimés (PCBS) play a critical role. With rapid advancements in technology, multilayer PCBs have become widely used across various electronic devices due to their superior electrical performance and optimized space utilization. This article provides a brief overview and explanation centered on the prototyping of 8-layer PCBs.


Basic Structure of an 8-Layer PCB

8-Layer PCBs

An 8-layer PCB consists of eight conductive layers (typically copper) interleaved with seven insulating layers (usually dielectric materials). This structure enables more complex circuit routing, enhances circuit integration, and improves overall performance. Each conductive layer can be routed as needed according to the design, while the insulating layers ensure electrical isolation between the layers.


8-Layer PCB Stack-Up

1. Signal Layer (HAUT)

Signal Layer

Signal Layer

The first signal layer, also known as the top layer, is the visible surface of the physical PCB and is used for mounting electronic components. As shown in the diagram, this layer has a high density of traces. One reason is that components are placed on this same layer, allowing direct routing without the need for vias to switch layers. This avoids vias interfering with routing on other layers. In multilayer board design, via placement requires careful consideration.

2. Power Plane (VCC)

Power Plane
This layer shows no routing because it is dedicated to the power network. During design, specific traces are used to split different power domains. It is essential to place components with the same voltage requirement in the same region so they can be connected to the corresponding power zone through vias—eliminating the need for additional routing.

3. Signal Layer (Inner Layer 3)

Inner Layer 3

Inner Layer 3


This layer is primarily used for signal routing, though some power lines are also present. In the diagram, the thicker traces represent power lines, while the thinner ones are signal traces.

4. Signal Layer (Inner Layer 4)

Inner Layer 4
This layer is similar in function to the previous one, used for both signal and power routing.

5. Ground Plane (GND)

Ground Plane
This layer serves as the ground network, interconnected through vias.

6. Signal Layer (Inner Layer 5)

Inner Layer 5
Used for signal routing.

7. Ground Plane (GND)
This layer mirrors Layer 5 and also functions as part of the ground network.

8. Bottom Layer

Bottom Layer
The bottom layer, like the top layer, is commonly used for routing small components. Traces for many of the smaller chips are typically found on either the top or bottom layer.

Standard Thickness of 8-Layer PCBs

The standard thickness for 8-layer PCBs typically ranges from 1.6 MM (63 mils) à 2.4 MM (94 mils), depending on the copper foil thickness and the choice of prepreg/core materials. Cependant, the final thickness may also be influenced by several key factors:

  • Copper thickness (Par exemple, 1 oz, 2 oz)

  • Dielectric spacing between layers

  • Type of materials used in the PCB stack-up

Standard Thickness of 8-Layer PCBs

Standard Thickness of 8-Layer PCBs

Thicker PCBs offer greater mechanical strength and are less prone to warping, making them ideal for industrial applications. Thinner PCBs, on the other hand, are more suitable for compact devices such as smartphones and portable electronics.

In practical design, the standard Épaisseur du PCB should be determined based on the circuit’s characteristics—such as whether impedance control is needed, if there are thermal management requirements, and the manufacturing capabilities of the PCB fabricator. An appropriate thickness ensures the PCB can be properly mounted inside the enclosure, aligned with connectors, and integrated smoothly into the final product assembly.


Key Design Considerations for 8-Layer PCBs

1. Contrôle d'impédance
High-speed signal traces (Par exemple, DDR4, HDMI) require differential impedance matching (typically 100Ω). This is achieved by fine-tuning trace width, espacement, and the distance to reference planes.
Use SI/PI simulation tools (Signal/Power Integrity) to optimize trace layout.

2. Power Distribution Network (PDN)
Dedicated power and ground planes reduce noise and ensure power integrity.
Decoupling capacitors (Par exemple, 0.1μF) are placed near power pins to suppress high-frequency interference.

3. Differential Pair Routing
Differential signal lines (Par exemple, USB 3.0) should be routed with equal length and closely spaced in parallel.
Avoid 90° angles—use 45° bends to reduce signal reflection and maintain integrity.

4. Interface Design

  • Ethernet: Magnetic transformers should be placed close to the PHY chip; differential pairs should have copper pour cleared underneath to minimize crosstalk.

  • HDMI: Common-mode chokes and ESD protection components should be placed near the connector; keep intra-pair skew ≤ 5 mils.

5. Gestion thermique
For high-power components (Par exemple, CPUs), add thermal vias or conductive materials beneath the component to dissipate heat and prevent thermal-induced signal instability.

8-Layer PCB Prototyping Process

The prototyping process for an 8-layer PCB typically involves the following key steps:

  1. Conception
    Use professional electronic design software to create the schematic diagram, and convert it into a PCB layout file.

  2. Review
    Conduct a thorough review of the design files to ensure the circuit layout is accurate and meets manufacturing requirements.

  3. Photoplotting
    Convert the verified PCB layout files into photoplot files, which are used in the exposure process.

  4. Inner Layer Circuit Fabrication
    Import the photoplot files into an exposure machine. Using exposure and development processes, create the inner layer circuitry.

  5. Laminage
    Alternate the inner layers with insulating layers, and bond them together under high temperature and pressure to form a multilayer structure.

  6. Forage
    Drill holes in the laminated stack based on design specifications to allow for component mounting and inter-layer connections.

  7. Outer Layer Circuit Fabrication
    Create circuit patterns on the outer copper layers and perform necessary surface finishes (Par exemple, gold plating, Saigner).

  8. Inspection
    Perform rigorous quality checks on the finished 8-layer PCB, including visual inspection and electrical testing, to ensure performance and reliability.

  9. Shipping
    Once the PCBs pass inspection, they are packaged and shipped to the customer.

8-Layer PCB Prototyping Process

8-Couche PCB Prototyping Processus


Applications of 8-Layer PCBs

8-layer PCBs are widely adopted in various industries due to their excellent electrical performance and superior signal integrity. Common application areas include:

  1. Telecommunication Equipment
    In the communications sector—particularly in high-frequency, high-speed systems such as 5G base stations and optical communication devices—8-layer PCBs effectively reduce signal crosstalk and improve transmission quality and stability.

  2. Computers and Servers
    Modern computing environments, especially high-performance servers and data centers, require intricate circuit design and precise power management. The multilayer architecture of 8-layer PCBs meets diverse circuit demands and enhances data processing efficiency.

  3. Électronique grand public
    Devices such as smartphones, comprimés, and high-end home audio systems increasingly rely on 8-layer PCBs. As device functionality expands, so does component density. These boards allow for greater integration and stability within compact form factors.

  4. Dispositifs médicaux
    Complex equipment like ultrasound machines and CT scanners benefit from the optimized layout and signal accuracy provided by 8-layer PCBs. This ensures precise signal processing, which is critical for diagnostic reliability.

  5. Systèmes de contrôle industriels
    Automation systems and industrial robots demand high reliability and functional complexity. The robust power distribution and noise immunity of 8-layer PCBs make them suitable for harsh and demanding industrial environments.


8-layer PCBs, with their multilayer collaborative design, address key challenges such as high-speed signal integrity, power noise suppression, et gestion thermique. They are becoming core components in emerging fields like 5G communication et AI hardware. As material technologies evolve—such as ultra-thin dielectrics and laser drilling—the performance boundaries of 8-layer PCBs will continue to expand.

Introduction to automotive audio pcba modules

Automotive Audio Control Module (ACM) is one of the core components of in-vehicle infotainment system (Infotainment System), which is responsible for the management, traitement, and regulation of audio signal input, output, and function control in the vehicle. With the development of automotive electronics technology, the audio PCB module is constantly upgraded in terms of integration, performance and functionality, and has become a key indicator of the strengths and weaknesses of the car audio system.

Automotive audio pcba module functions

1. Audio signal processing

Input source management: integrates multiple audio inputs (par exemple. AM/FM radio, Bluetooth, USB/AUX interface, in-car navigation voice, cell phone casting audio, etc.), supports signal switching and priority control.

Digital Signal Processing (DSP): including equalizer (EQ) adjustment, frequency crossover, noise reduction, surround sound (such as Dolby Atmos) effect enhancement.

Volume Dynamic Compensation: Automatically adjusts the volume according to the speed of the vehicle (par exemple. Speed-Volume Compensation) to offset the interference of environmental noise.

2. User Interactive Controls

Functions are operated via physical buttons, touch screen or voice commands (par exemple. “Turn up the volume”).

Linkage with the instrument panel or HUD (Heads Up Display) to display information on the current audio source, volume, etc..

3. Network communication

interacts with other vehicle modules (par exemple. BCM body control module) via CAN/LIN bus, realizing functions such as mute door opening and closing, reverse radar tone mixing and so on.

Support OTA (over-the-air upgrade) to update the audio algorithm or function expansion.

Automotive audio control modules

Composition of Automotive Audio PCB Module

1. Signal Input and Processing Unit
Receives audio signals from radio, Bluetooth, USB, AUX and other input sources.
Includes ADC (analog-to-digital converter) and DAC (digital-to-analog converter) to convert analog signals to digital signals.
Integrated DSP (Digital Signal Processor) for sound effects adjustment (such as equalizer, reverb, sound field positioning) and noise suppression.

2. Power amplifier unit

amplifies the processed audio signal to a power level sufficient to drive the speakers.
Classification:
Class AB amplifier: balancing efficiency and sound quality, suitable for mid-range models.
Class D amplifier: high efficiency, faible consommation d'énergie, widely used in modern car audio.
Class G/Class H amplifier: Dynamically adjusts the power supply voltage to improve the energy efficiency ratio.

3.Audio Output Unit

Connects speakers (tweeter, midrange, bass, subwoofer) and subwoofer.
Supports multi-channel output (par exemple. 5.1-canal, 7.1-canal) to realize immersive sound.

4. Control and interface unit
provides user interaction interface (par exemple. knob, touch screen, voice control).
Integrate CAN bus, LIN bus and other communication protocols to link with in-vehicle infotainment system (IVI).

Software Architecture

Bottom driver: control hardware resources (par exemple. I2S audio bus, GPIO key detection).

Middleware: audio framework (par exemple. AAOS Audio HAL for Android Automotive), Bluetooth protocol stack (A2DP/HFP).

Application layer:

sound algorithms (par exemple. Bose’s Centerpoint virtual surround technology).

Voice recognition integration (par exemple. Amazon Alexa, Baidu DuerOS).

Troubleshooting (supports UDS protocol, can read DTC fault codes).

Key Technologies for Automotive Audio PCB Modules

1. Highly integrated design
Adopting SoC (Système sur puce) or SiP (System-in-Package), the processor, amplifier, DAC and other functions are integrated into a single chip, reducing PCB area and wiring complexity.

2. Low noise and anti-interference technology
Power supply decoupling design: use multi-layer PCB and low ESR capacitors to suppress power supply noise.
Shielding technology: metal casing, ground isolation, differential signal transmission, reduce electromagnetic interference (EMI).
Grounding optimization: star grounding or single-point grounding to avoid ground loop interference.

3. High-efficiency heat dissipation design
High-power amplifier generates a lot of heat, which needs to be dissipated by heat sink, heat pipe or liquid cooling system.
PCB layout optimization: dispersed arrangement of heat generating components to avoid local overheating.

4. High Reliability Design
meets AEC-Q100/Q200 and other automotive grade component standards.
High temperature, vibration and humidity resistant design to adapt to the harsh automotive environment.

Automotive audio pcba module application cases

High-end models: such as BMW 7 Series, Mercedes-Benz S-Class, with multi-channel DSP amplifier, supporting active noise reduction and personalized sound customization.
New energy vehicles: Tesla Model 3/Y and other models, integrated 14-speaker + subwoofer system, sound effect optimization through the central processor.
Aftermarket: Third-party manufacturers (Par exemple, JBL, Harman Kardon) provide modular audio solutions, adapting to different models.

Résumé

Automotive audio control modules are evolving from single-function to highly integrated and intelligent, becoming the key to enhancing the driving experience. With the popularization of electric vehicles and the advancement of autonomous driving technology, the requirements for real-time, sound quality and multi-modal interaction will further increase. If you need automotive audio modules, please contact LSTpcb, we have PCBA modules designed specifically for automotive audio, with powerful functions to meet all automotive audio applications.

FPC circuit board: a complete analysis from materials to processes

In the electronics manufacturing industry, flexible printed circuit boards (FPCS) play a vital role. With the rapid development of science and technology, higher requirements are placed on the processing technology of FPCs. In order to meet market demand and improve production efficiency, we need to continuously innovate and optimize FPC processing technology. Dans cet article, we will make a comprehensive analysis of FPC from materials to processing technology to help everyone better understand flexible circuit boards.

FPC concept

FPC, the full name of Flexible Printed Circuit, is a flexible printed circuit board, or soft board for short. It uses photo-imaging pattern transfer and etching technology on a flexible substrate to construct a conductor circuit, realize the electrical interconnection of the inner and outer layers of double-sided and multi-layer circuit boards, and protect and insulate through PI and glue layers. FPC is known for its high wiring density, light weight and thin design, and is widely used in many electronic products such as mobile phones, ordinateurs portables, PDAs, digital cameras and LCMs.

Main raw materials of FPC

The main raw materials of FPC include: substrate, cover film, reinforcement material and other auxiliary materials. These materials play a vital role in the manufacturing process of FPC and together constitute the basis of flexible printed circuit boards.

1. Substrat:

As the supporting core of FPC, it determines the basic performance of the product. There are many types of substrates, and the selection should be based on the specific application scenarios and needs.

1.1 Glue substrate

Glue substrate, mainly composed of copper foil, glue and PI materials, is divided into single-sided substrate and double-sided substrate. Single-sided substrate is covered with copper foil only on one side, while double-sided substrate is covered with copper foil on both sides.

1.2 Glue-free substrate

Glue-free substrate, c'est, substrate without glue layer, has a simpler structure than ordinary glue substrate, and is composed of only two parts: copper foil and PI. The advantages of this substrate are its thinner characteristics, excellent dimensional stability, excellent heat resistance, bending resistance and excellent chemical resistance. For this reason, glue-free substrate has been widely accepted and applied in various fields today.

In terms of copper foil, the common thickness specifications on the market include 1OZ, 1/2OZ and 1/3OZ. Recently, thinner 1/4OZ copper foil has been introduced. Although such materials have been used in China, their advantages are more obvious when making products with ultra-fine lines (line width and line spacing of 0.05MM and below). With the increasing demand of customers, this specification of copper foil is expected to be more widely used in the future.

2. Covering film

The covering film is mainly composed of release paper, glue layer and PI. Pendant le processus de production, the release paper plays a role in protecting the glue layer to prevent it from being contaminated with foreign matter. But in the end, the release paper will be torn off, and the glue layer and PI together constitute an important part of the product.

3. Reinforcement material

Reinforcement material is specially designed for FPC to enhance the support strength of specific parts of the product, thereby improving the overlysoftcharacteristics of FPC. There are many types of common reinforcement materials on the market.
1) FR4 reinforcement: It is mainly made of glass fiber cloth and epoxy resin glue, which is exactly the same as the FR4 material used in PCB.

2) Steel sheet reinforcement: This reinforcement material is mainly composed of steel, which is not only outstanding in hardness, but also has strong supporting strength.

3) PI reinforcement: It is similar to the cover film, consisting of PI and adhesive release paper, but the special thing is that its PI layer thickness can be customized from 2MIL to 9MIL.
Pure glue: This thermosetting acrylic adhesive film consists of protective paper/release film and a layer of glue. It is mainly used to bond layered boards, soft-hard boards, and FR-4 and steel sheet reinforcement boards.
Electromagnetic protective film: It is designed to be attached to the board surface to play a shielding role.
Pure copper foil: This material is composed only of copper foil and is a key material in the production process of hollow boards.

Unique advantages of flexible circuit boards

Flexible printed circuit boards, with their flexible insulating substrate as their feature, create many superior properties that rigid printed circuit boards do not have:

1. Flexibilité: Flexible circuit boards can bend, roll and fold freely, fully adapting to the needs of spatial layout, while achieving easy movement and stretching in three-dimensional space, thus efficiently integrating component assembly with wire connection.

2. Size and weight advantages: With the help of flexible circuit boards, the volume and weight of electronic products can be significantly reduced, perfectly matching the trend of electronic products towards high density, miniaturization and high reliability. For this reason, flexible circuit boards have been widely used in aerospace, militaire, mobile communications, ordinateurs portables, computer peripherals, PDAs, digital cameras and other fields or products.

3. Excellent characteristics: Flexible circuit boards not only have good heat dissipation and solderability, but also are easy to install and connect, and the overall cost is relatively low. Its soft and hard combination design makes up for the slight lack of flexible substrate in component carrying capacity to a certain extent.

Types of FPC

There are many types of flexible circuit boards, including single-sided flexible, double-sided flexible and multi-layer flexible. Parmi eux, the cover layer of the single-sided carte PCB flexible is bonded to the single-sided FPC core without adhesive, while the double-sided flexible PCB is a double-sided FPC core without adhesive with cover layers bonded on both sides and plated through holes. Multi-layer flexible PCB contains three or more conductive layers with plated through holes, and its manufacturing capacity can reach more than 12 couches. En outre, there are special types of flexible circuit boards such as hollow boards, layered boards, and soft-rigid boards.

Detailed explanation of FPC production process

Single-sided board process flow:
Coupe: D'abord, cut out the board of suitable size according to the design requirements.
Baking: Preheat the board to increase its machinability.
Dry film: Paste a layer of dry film on the board as a protective layer for subsequent processes.
Exposition: Transfer the circuit pattern to the dry film through the exposure machine.
Développement: Wash off the unexposed dry film with chemical solution to expose the circuit pattern.
Gravure: Etch off the part not covered by the dry film with etching liquid to form a circuit.
Demolding: Peel off the dry film from the board.
Pretreatment: Clean and activate the board to enhance surface adhesion.
Coating film: Paste a layer of covering film on the board to protect the circuit.
Laminage: Lay the covering film and the board together to form a circuit layer.
Curing: Cure the lamination layer by heating and pressurizing.
Traitement de surface: Surface treatment of the circuit to enhance its corrosion resistance and conductivity.
Electrical measurement: Detect the connectivity and performance of the circuit through electrical measurement equipment.
Assemblée: Assemble the circuit board with other components.
Pressing: Press the circuit board again to ensure that the connection between the components is firm.
Curing: Heat and pressurize again to cure the assembly layer.
Text: Print logos and instructions on the circuit board.
Shape: Cut the shape of the circuit board according to the design requirements.
Final inspection: Perform a final inspection on the circuit board to ensure that its quality and performance meet the requirements.
Packaging and shipment: Qualified circuit boards are packaged and then shipped.

Résumé

Flexible Fabrication de PCB requires full-link coordination from material selection, process parameters to testing standards. In the future, as AIoT devices develop towards high frequency and miniaturization, flexible PCBs will evolve towards ultra-thick copper layers (>3oz), embedded components, self-healing materials, etc., becoming the core technology supporting the innovation of smart hardware.

14 Méthodes de test PCBA

PCBA (Assemblage de la carte de circuit imprimé) testing is a critical step in the electronics manufacturing process. It ensures that circuit boards and their mounted electronic components function correctly according to design specifications, achieving the expected performance and reliability. PCBA testing encompasses various aspects, including functional testing, performance evaluation, reliability assessment, and environmental adaptability testing.

As an indispensable part of PCB manufacturing, PCBA testing helps detect issues in a timely manner, enabling engineers to address problems quickly and ensuring high product quality. Dans cet article, we will explore 14 PCBA testing methods in detail, helping you understand their applications and select the most appropriate approach for your needs.

14 commonly used PCB testing methods.

Functional Testing

1. In-Circuit Testing (TIC)

In-Circuit Testing

In-Circuit Testing

TIC, or Automated In-Circuit Testing, is an essential and powerful tool for modern PCB manufacturers. It uses test probes to contact designated test points on the PCB layout, detecting open circuits, court-circuites, and component failures while providing clear diagnostic feedback.
ICT offers broad applicability, high measurement accuracy, and precise fault indication, making it easy for even less-experienced workers to handle defective PCBs. It significantly improves production efficiency and reduces manufacturing costs.

2. Flying Probe Testing

Both Flying Probe Testing and ICT are highly effective in identifying manufacturing defects, but flying probe testing is a particularly cost-effective method for enhancing PCB quality. Unlike traditional ICT, which relies on fixed test probes, flying probe testing uses two or more independently controlled probes that move dynamically based on software instructions.
Since flying probe testing does not require fixed test points, it has a lower initial cost and can be modified via software rather than hardware adjustments. This makes it ideal for small-batch production. Cependant, ICT is faster and less prone to errors, making it more economical for high-volume production.

3. Functional Testing

Functional Testing


Functional System Testing employs specialized test equipment at various stages of production to verify circuit board functionality. It primarily includes Final Product Testing and Hot Mock-Up Testing.
Unlike ICT, functional testing does not provide in-depth data (such as pin positions or component-level diagnostics) for process improvement. Instead, it requires dedicated testing equipment and custom-designed test programs, making it complex and less suited for most production lines.

4. Inspection optique automatisée (AOI)

Inspection optique automatisée

AOI utilizes either a single 2D camera or dual 3D cameras to capture PCB images and compare them to a detailed schematic. If discrepancies are detected, the system flags them for manual inspection.
Since AOI does not power up the PCB, it cannot detect all potential defects, making it most effective when combined with other testing methods, such as:

  • AOI + Flying Probe Testing

  • AOI + TIC

  • AOI + Functional Testing

5. X-Ray Inspection

X-Ray Inspection

X-Ray Testing uses low-energy X-rays to quickly identify open circuits, court-circuites, solder voids, and other defects.
It is particularly useful for inspecting ultra-fine-pitch and high-density PCBs, detecting assembly issues like bridging, missing chips, and misalignment. En plus, X-ray inspection can utilize tomography to identify internal defects within IC chips. It remains the only reliable method for evaluating BGA solder quality and embedded components, offering the advantage of fixture-free testing.

6. Laser Inspection

This is one of the latest advancements in PCB testing technologie. It involves scanning the PCB with a laser beam to collect measurement data, which is then compared to preset acceptance thresholds.
Laser inspection has been successfully validated for bare board testing and is being explored for assembled PCB testing. It provides fast output, requires no fixtures, and offers clear visual access. Cependant, its main drawbacks include high initial costs and maintenance challenges.

7. Aging Test

Aging Test

Aging testing simulates real-world conditions to accelerate product wear and evaluate its long-term stability and reliability. The product is exposed to controlled temperature and humidity conditions while operating continuously for 72 hours to 7 jours. Performance data is recorded and analyzed to refine the production process, ensuring the product meets market demands. Aging tests primarily focus on electrical performance but can also include drop tests, vibration tests, and salt spray tests.

8. Solderability Testing

Solderability testing ensures robust surface adhesion and enhances the likelihood of forming reliable solder joints. This test, based on the wetting balance method, evaluates the solderability of components, PCB pads, solder materials, and fluxes both qualitatively and quantitatively.

9. PCB Contamination Testing

PCB contamination testing detects ionic residues from flux, cleaning agents, humidité, plating, soudure d'onde, and reflow soldering. These contaminants can lead to corrosion and other reliability issues. Identifying and eliminating them is crucial for maintaining PCB integrity.

10. Cross-Section Analysis

Cross-Section Analysis

Cross-section analysis examines defects, open circuits, court-circuites, and other failures by slicing the PCB for microscopic inspection. It provides insights into structural and material integrity.

11. Time-Domain Reflectometry (TDR) Essai

TDR testing

TDR testing is recommended for diagnosing faults in high-speed or high-frequency PCBs. It quickly identifies open and short circuits while pinpointing the exact failure location, making it a crucial tool for signal integrity analysis.

12. Peel Test

Peel Test

The peel test evaluates the adhesion strength between copper foil and the PCB substrate or brown oxide layer. It assesses bonding integrity under various conditions, including normal states, thermal stress, et des températures élevées, ensuring mechanical reliability.

13. Solder Float Test

This test determines a PCB’s resistance to thermal stress, particularly for plated-through holes, surface conductors, and pads. The sample is immersed in molten solder for up to 5 minutes, with a depth not exceeding 50% of its thickness. After removal, it remains level until the solder solidifies, ensuring structural resilience.

14. Wave Soldering Test

Wave soldering testing evaluates the PCB’s ability to withstand the soldering process. Parameters such as fixture type, conveyor speed, preheating conditions, oxidation prevention, process control, board inclination, and soldering temperature are carefully recorded and analyzed to ensure optimal soldering quality.

Conclusion

These testing methods provide a comprehensive evaluation of PCBA performance. Manufacturers can select the most suitable tests based on the product’s specific applications and environmental requirements. By implementing rigorous testing, the risk of field failures is significantly reduced, enhancing product reliability and market competitiveness.

Guide de fabrication et d'utilisation des bobines de PCB

Le PCB de la bobine fait référence à un composant de type inductance créé en acheminant directement les traces en une forme de bobine sur un PCB. Cette technologie offre une excellente résistance à la tension, Facteur Q élevé, forte cohérence, routage flexible, et une capacité de transport à courant élevé, Le faire largement utilisé dans les applications d'antenne. Une bobine de PCB est une bobine directement fabriquée sur une carte de circuit imprimé en utilisant des traces de conducteur sur les couches de la carte de circuit imprimé.

Dans cet article, Nous fournirons une introduction détaillée aux bobines de PCB, couvrant leur concept, avantages, applications, processus de fabrication, et d'autres caractéristiques clés pour aider les utilisateurs à acquérir une compréhension complète des bobines de PCB.

Qu'est-ce qu'une bobine PCB?

Une bobine PCB est un appareil qui utilise des traces métalliques conçues avec précision sur une carte de circuit imprimé pour former une bobine de forme sélectionnée. De manière intéressante, Ce processus peut être implémenté sur plusieurs couches, en fonction de différentes formes et modèles.
En plus, Les PCB consistent en alternance de couches et de conducteurs isolants qui entrelacent pour former des bobines de PCB groupées.
De plus, Ce composant comprend une couche de conducteur avec des pistes, lui permettant d'adapter une forme d'arc appropriée tout en étant divisé en plusieurs sections conductrices.

Structure de base des bobines de PCB

Les bobines de PCB se composent principalement des composants suivants:

  • Conducteur de bobine: Généralement en feuille de cuivre, formé en spirale ou d'autres formes spéciales à travers les processus de routage des PCB.

  • Couche d'isolation: Communément fait de FR4, polyimide (PI), ou substrats en céramique pour assurer une bonne performance d'isolation.

  • Vias: Utilisé pour connecter les traces de bobine dans les PCB multicouches, Amélioration de la capacité de transport en courant ou de l'augmentation de l'inductance.

  • Traitement de surface: Comprend Enig (Or d'immersion nickel électrolaire), OSP (conservateur de soudabilité organique), placage de soudure au plomb / sans plomb, etc., pour améliorer la fiabilité et la conductivité du soudage.

Types de bobines de PCB

(1) Classification par nombre de couches

  • PCB monocouche Bobine: La structure de la bobine est disposée uniquement d'un côté du PCB, avec une conception simple adaptée aux applications de faible puissance.

  • PCB multicouche Bobine: Utilise plusieurs couches de PCB empilées et connectées via les vias pour améliorer l'inductance et la capacité de transport en courant.

  • PCB flexible Bobine (Bobine FPC): Fabriqué à partir de matériaux flexibles comme pi, Convient aux applications pliables et ultra-minces, comme les bobines de charge sans fil.

(2) Classification par forme

  • Bobine en spirale: La structure la plus courante, avec la bobine distribuée en spirale le long de la surface du PCB. Largement utilisé dans la charge sans fil et les antennes RFID.

  • Bobine serpentine: Conçu pour les capteurs et les applications à haute fréquence, réduction de la capacité parasite.

  • Bobine rectangulaire / anneau: Utilisé dans des conceptions structurelles spécialisées, comme les applications de blindage électromagnétique et de transformateur.

Bobine de PCB

Comment fonctionne une bobine de PCB?

Les principes électromagnétiques des bobines de PCB sont identiques à ceux des bobines enroulées ou de toute autre inductance:

  • Élément conducteur: Les traces de cuivre agissent comme des composants conducteurs, Remplacement des enroulements en fil dans les inductances discrètes.

  • Champ magnétique induit: Lorsqu'un courant alternatif ou pulsé circule à travers les traces, il génère un champ magnétique en expansion et contractant.

  • Stockage d'énergie: En raison de l'inductance de la bobine, Le champ magnétique stocke temporairement l'énergie dans chaque cycle du courant CA.

  • Tension induite: Tout changement dans le courant appliqué induit une tension à travers la bobine proportionnelle au taux de variation, en raison de l'inductance.

  • Impédance: La bobine présente une impédance qui varie avec la fréquence, principalement en raison de la réactance inductive.

Ainsi, Une bobine de PCB fonctionne essentiellement comme une inductance standard, avec ses paramètres déterminés par sa structure et ses matériaux.

Considérations de conception clés pour les bobines de PCB

(1) Calculs de paramètres de bobine

La conception d'une bobine de PCB implique principalement les paramètres clés suivants:

  • Inductance (L): Dépend du nombre de tours, largeur de trace, espacement, et matériel de substrat.

  • Résistance (R): Déterminé par épaisseur de feuille de cuivre, largeur de trace, et longueur, affectant directement les pertes d'énergie.

  • Q FACTEUR (Facteur de qualité): Un facteur Q plus élevé indique des pertes plus faibles, Le rendre adapté aux applications à haute efficacité.

  • Fréquence de résonance (f₀): Le point de résonance doit être pris en considération pour éviter les interférences ou les pertes du signal.

(2) Considérations de mise en page des bobines

  • Largeur de trace et espacement: Doit être sélectionné en fonction des niveaux de courant et de la fréquence pour éviter une surchauffe ou une interférence électromagnétique (EMI).

  • Connexions intercouches (Via la conception): Via le diamètre et le remplissage du cuivre doivent être optimisés pour réduire l'impédance et améliorer la fiabilité.

  • Boulissant et avions au sol: Pour les applications à haute fréquence, Les plans de sol ou les couches de blindage peuvent être utilisés pour minimiser les interférences externes.

PCB Coil-1

Processus de fabrication de bobines de PCB et contrôle de précision

La fabrication de bobines de PCB implique une photolithographie, gravure, et les processus d'électroples. Le flux de travail typique est le suivant:

Processus de photolithographie

  • Mesures: Revêtement de photorésistaire → Exposition UV (en utilisant un film ou une imagerie directe LDI) → Développement → Gravure → Résister le déshabillage.

  • Précision: LDI (Imagerie directe laser) La technologie permet la largeur de ligne / l'espacement ≤ 25 μm, Répondre aux exigences des bobines à haute fréquence.

Technologie d'épaississement de la couche de cuivre

  • Cuivre électroplate: Le dépôt électrolytique augmente la couche de cuivre de 1 oz à 10 oz, réduisant considérablement la résistance. (Par exemple, dans un large de 1 mm, 10bobine de longueur mm, 1Le cuivre oz a une résistance à ~ 5 mΩ, tandis que le cuivre de 10 oz le réduit à ~ 0,5 mΩ.)

  • Applications: Les inductances ou transformateurs de haute puissance nécessitent un équilibre entre le coût et la dissipation de chaleur.

Processus de PCB multicouche

  • Laminage & Vias: Les feuilles de cuivre multicouche sont laminées à l'aide de feuilles préimpressives, avec des vias formés via le laser ou le forage mécanique pour établir des connexions électriques entre les couches.

  • Avantages: Transformateurs planaires (Par exemple, une planche à 4 couches avec des bobines primaires et secondaires à couplage verticalement) Améliorer l'efficacité du couplage magnétique.

Technologie de coupe laser

  • Adapté à: Bobines de PCB flexibles, lignes de méandre à haute fréquence, Éliminer le besoin de gravure en coupant directement la couche de cuivre.

  • Précision: Les lasers Co₂ ou UV atteignent une précision de coupe de ± 10 μm.

Applications de bobines de PCB

(1) Charge sans fil

  • Utilisé dans les émetteurs de charge sans fil Qi (TX) et récepteurs (Rx).

  • Les conceptions de bobines en spirale multicouche améliorent l'efficacité du transfert d'énergie.

(2) Communication RF et NFC

  • Utilisé dans RFID, Applications NFC telles que les cartes à puce et les appareils de paiement électroniques.

  • L'optimisation de la fréquence de résonance de la bobine assure la compatibilité avec les bandes de fréquence cibles (Par exemple, 13.56MHz).

(3) Capteurs et mesure

  • Appliqué dans les capteurs d'induction magnétique et les capteurs de courant.

  • Les conceptions différentielles de la bobine de PCB améliorent la sensibilité du signal.

(4) Power and Electromagnétique Boundage

  • Utilisé dans les transformateurs PCB et la suppression EMI.

  • Les virages de la bobine et les réglages de forme optimisent la compatibilité électromagnétique (EMC).

Conclusion

Comme composant magnétique essentiel dans les systèmes électroniques modernes, La conception de la bobine de PCB nécessite un examen attentif des matériaux, processus de fabrication, performance électromagnétique, et gestion thermique. Avec des demandes croissantes de haute fréquence, intégré, et designs flexibles, La technologie de bobine PCB continuera d'évoluer pour des performances plus élevées et des applications plus larges. Grâce à une conception optimisée et à l'innovation de processus, Les bobines de PCB joueront un rôle crucial dans les champs émergents tels que la communication 5G, IoT, et véhicules électriques.

Fabricant d'assemblage PCB abordable en Chine

In the electronics manufacturing industry, “high quality” et “faible coût” often seem like conflicting goals. Cependant, through optimized manufacturing processes, precise supply chain management, and efficient quality control, LSTPCB is able to provide high-quality and highly cost-competitive Assemblage PCB (PCBA) services, helping you bring your products to market quickly.

We have provided PCB services to thousands of enterprises worldwide, earning an excellent reputation. LSTPCB is dedicated to offering the most affordable Fabrication de PCB and assembly services globally without compromising quality. We strive to provide the best PCB assembly solutions for every customer. Whether you need low-cost SMT PCB assembly, budget-friendly turnkey PCB assembly, or an economical full-service PCB assembly, LSTPCB is your trusted PCBA partner.

Why Choose Affordable PCB Assembly Services?

Opting for low-cost PCB assembly services offers multiple advantages, especially for startups, small R&D teams, or individual designers. Below is an in-depth analysis of why affordable PCB assembly services make sense:

1. Lower R&D Costs

Direct Cost Reduction

  • Discounted Prototyping Fees: Many manufacturers offer low-cost or even free PCB prototyping services. Thanks to automated production and intelligent manufacturing processes, production costs are minimized, allowing for more competitive pricing on prototyping.
  • Bulk Prototyping Discounts: If your project requires multiple prototypes, many suppliers provide volume discounts, further reducing the per-unit cost.

Indirect Cost Savings

  • Avoid Initial Investment: PCB assembly requires expensive equipment (such as surface mount technology (Smt) machines and quality inspection systems) and skilled personnel. Outsourcing eliminates the need for upfront investments, lowering financial risks.
  • Save on Facility Costs: No need to build factories or warehouses to store equipment and raw materials, significantly cutting rental and maintenance expenses.

2. Accelerate the R&D Cycle

Délai d'exécution rapide
Many low-cost PCB assembly providers have streamlined production processes and rapid response mechanisms, significantly reducing the time from design submission to prototype delivery. This helps accelerate product development and ensures faster time-to-market.

Early Problem Detection
With one-stop PCBA services, manufacturers can review design files before production to identify potential issues. This prevents costly modifications and rework during the manufacturing process.

LSTPCB ensures you get the best balance of cost, qualité, and efficiency for your PCB assembly needs. Contact us today to discuss how we can support your next project!

How to Achieve Low-Cost PCB Assembly?

Achieving affordable PCB assembly requires strategic design, cost-effective materials, efficient production, supply chain optimization, and strict quality control. Below are the key methods to reduce costs while maintaining high quality:


1. Optimize PCB Design to Reduce Manufacturing Costs

Design directly impacts cost. A well-planned PCB layout can significantly cut down production expenses:

✅ Reduce Layer Count – Whenever possible, utiliser 2-6 layer PCBs instead of expensive 8+ layer HDI designs, unless absolutely necessary.

✅ Standardized Component Packages – Select widely available SMD components to avoid custom or obsolete parts, which can increase sourcing difficulty and costs.

✅ Improve Routing & Material Utilization – Minimize unnecessary copper fill, optimize PCB shape, and ensure efficient use of materials to reduce waste.


2. Choose Cost-Effective PCB Materials

Different PCB materials vary in cost. For consumer electronics, we recommend:

✅ FR-4 Material – Use standard 140TG or 170TG FR-4, which offers the best cost-performance ratio.

✅ Optimize Copper Thickness – Using 1oz copper instead of 2oz reduces material expenses.

✅ Avoid Over-Engineering – Features like blind/buried vias increase complexity and cost. Keep the design as simple as possible while meeting performance requirements.


3. Efficient SMT Assembly & Manufacturing Process

At LSTPCB, we utilize fully automated SMT production lines, which reduce manual intervention and improve yield rates. Key cost-saving strategies include:

✅ Batch Production Reduces Unit Cost – After prototyping and finalizing the design, switching to mass production significantly lowers per-unit expenses.

DFM (Design for Manufacturability) Optimization – Optimizing the design early minimizes assembly difficulties, improving production efficiency.

✅ High-Speed SMT + Controlled Reflow Soldering – Precise temperature curve control reduces soldering defects and minimizes rework costs.


4. Supply Chain Integration for Lower Component Costs

LSTPCB leverages a stable global component supply chain to help customers:

✅ Bulk Purchase Discounts – Lower procurement costs through volume purchasing.

✅ Localized Component Substitution – Reduce import duties and shipping fees by sourcing alternatives locally.

✅ BOM Optimization – Suggest cost-effective alternative components to ensure the best pricing and stable supply.


5. Quality Control to Minimize Rework Costs

High-quality manufacturing means fewer defects, less rework, and lower overall costs. At LSTPCB, we implement:

100% AOI (Inspection optique automatisée) – Detect soldering and assembly defects in real time.

✅ X-ray Inspection for BGA Soldering – Ensure no hidden soldering defects, eliminating rework risks.

✅ ICT (In-Circuit Testing) + FCT (Functional Testing) – Guarantee 99.9%+ final product pass rate, reducing failure-related expenses.

By combining these strategies, LSTPCB delivers affordable, high-quality PCB assembly services that help businesses minimize costs without sacrificing reliability. Contact us today to optimize your PCB manufacturing!

Cheap PCB Assembly Factory in China

LSTPCB is a leading PCBA supplier in China, providing a wide range of affordable PCB assembly services for global customers. We offer comprehensive PCB solutions across various industries, including new energy products, électronique grand public, dispositifs médicaux, industrial control systems, and AI smart products. Whether you require turnkey PCB assembly or consigned PCB assembly, we have the expertise to deliver cost-effective and reliable solutions. Our pricing is highly competitive, ensuring maximum value for our clients.

Service Type

Description

Key Features

Contract PCB Assembly Solutions

PCBasic offers cheap contract PCB assembly services, covering the entire process from component sourcing to final assembly.

Cost-effective

Full PCB assembly service

Flexible contract options

Test d'assemblage PCB Services

Cheap price with premium services, ensuring each PCB undergoes rigorous testing to meet performance standards. Including cheap SMT PCB assembly, two-sided PCB assembly, and turnkey PCB assembly.

Efficient Automated Optical Inspection (AOI)

Thorough Circuit Testing

Meets budget requirements

Cheap Medical PCB Assembly

PCBasic’s cheap medical PCB assembly services meet the rigorous safety and reliability standards of the healthcare industry.

Complies with medical industry standards

Provides high reliability and safety

Suitable for various medical devices and applications

Your Trusted PCBA Service Partner!

LSTPCB is a reliable PCBA service provider, dedicated to offering efficient, high-quality, and cost-effective solutions tailored to your needs.

Fémoire fabricant d'assemblés PCB flexibles

Flexible PCBs are increasingly being used in various electronic devices. Par rapport aux PCB rigides traditionnels, flexible PCBs can bend, fold, and twist, making them adaptable to different product designs. This article provides an in-depth discussion on the fundamentals of flexible PCBs, their advantages, application areas, and leading manufacturers.

What is a Flexible PCB?

A flexible printed circuit board (FPCB) is a type of printed circuit made using a flexible insulating substrate. These circuits offer excellent electrical performance, catering to the demands of miniaturization and high-density designs while reducing assembly steps and enhancing reliability. As the only viable solution for compact and mobile electronic products, flexible PCBs can bend, roll, et plier librement, enduring millions of dynamic bending cycles without damaging the conductive traces. They can be arranged according to spatial layout requirements and move or extend in three-dimensional space, enabling seamless component integration and interconnection. Par conséquent, flexible PCBs significantly reduce the size and weight of electronic products, meeting the industry’s demand for high-density, miniaturized, and highly reliable designs.

Advantages of Flexible PCBs

  • Haute fiabilité
    Constructed with multiple layers of thin films bonded by adhesive layers, flexible PCBs ensure strong impedance control and signal integrity, providing exceptional reliability and stability.

  • Reduced Weight and Thickness
    Contrairement aux PCB rigides, flexible PCBs utilize lightweight, flexible substrates, which not only reduce the overall product weight and thickness but also contribute to sleeker and more aesthetically appealing designs.

  • Superior Durability and Heat Resistance
    Flexible PCBs maintain excellent performance under repeated mechanical stress, including bending, pliant, et torsion. En plus, they exhibit outstanding thermal resistance, making them suitable for high-temperature environments.

Application Fields of Flexible PCBs

  • Électronique grand public – Used in displays, touch panels, and other components of smartphones, comprimés, et ordinateurs portables.
  • Dispositifs médicaux – Applied in medical cameras, electrocardiograms, prosthetics, and bone scaffolds.
  • Électronique automobile – Found in in-car displays, DVD systems, and intelligent driving assistance devices.
  • Industrial Control Equipment – Used in automotive manufacturing robots, printing robots, Et plus.

PCB flexible

Fémoire fabricant d'assemblés PCB flexibles

The following companies are leaders in the FPC industry, excelling in technological expertise, product quality, and market share:


1. Zhen Ding Tech – Taiwan

Overview: Zhen Ding Tech, a subsidiary of Foxconn Group, is one of the world’s largest PCB manufacturers, specializing in high-end flexible PCBs (FPCS) and Rigid-Flex PCBs.

Avantages:

  • Key supplier for Apple, Huawei, and other global brands

  • Expertise in high-layer-count FPCs and precision Rigid-Flex PCBs

  • Advanced automated production lines to improve yield and efficiency


2. Nippon Mektron – Japan

Overview: A veteran Japanese FPC manufacturer and global market leader, focusing on high-precision, high-density FPCs.

Avantages:

  • Strong R&D capabilities for premium consumer electronics, médical, and automotive markets

  • Leading technologies in 5G, foldable devices, et électronique automobile

  • Strict quality control compliant with high-standard certifications


3. Career Technology – Taiwan

Overview: A major global FPC supplier, prominent in smartphones, portables, et électronique automobile.

Avantages:

  • Key clients include Apple, Samsung, and Tesla

  • Mass production of complex FPCs and multi-layer Rigid-Flex PCBs

  • Automated manufacturing and material optimization for cost reduction


4. Flexium Interconnect – Taiwan

Overview: A specialized FPC manufacturer and core supplier to Apple, targeting high-end consumer electronics.

Avantages:

  • Expertise in smartphones and wearables

  • Capabilities in FOPLP (Flexible Organic Package Substrate) and high-frequency FPCs

  • Advanced automated production and quality inspection systems


5. Sumitomo Electric Printed Circuits – Japan

Overview: The PCB division of Sumitomo Electric focuses on high-end FPCs, excelling in automotive and high-frequency communication fields.

Avantages:

  • Advanced PI materials and copper foil technology for enhanced performance

  • Strong presence in automotive, aérospatial, and medical industries

  • Innovations in high-temperature-resistant and high-frequency FPCs


6. Interflex Co., Ltd. – South Korea

Overview: A leading Korean FPC manufacturer supplying Samsung and expanding into automotive electronics.

Avantages:

  • Expertise in flexible OLED displays and foldable device FPCs

  • High-precision FPCs with ultra-fine circuits and dense designs

  • Integrated global supply chain for consumer electronics


7. MFS Technology – Singapore

Overview: Specializes in high-reliability FPCs for industrial, médical, and automotive applications.

Avantages:

  • Customized FPC solutions for niche applications

  • Certifications: ISO 13485, IATF 16949 (medical/automotive standards)

  • Capabilities in high-layer-count FPCs and Rigid-Flex PCBs


8. LSTPCB – China

Overview: A leading Chinese FPC manufacturer serving consumer electronics, automobile, and data centers.

Avantages:

  • Produces 1-10 layer FPCs, 1-40 layer rigid PCBs, et 2-50 layer Rigid-Flex PCBs

  • Uses premium materials (Par exemple, PI substrates, RA/ED copper foil) and surface treatments (Accepter, Enépique)

  • Complies with IPC 6013 Class 2/3 standards for reliability

Future Trends in Flexible PCBs

As demand for lightweight, miniaturized, and flexible electronics grows, the future of flexible PCBs looks promising. Technological advancements will make FPCs thinner, more durable, and more stable. Par rapport aux PCB rigides, FPCs offer superior cost efficiency and market competitiveness. Their applications will expand into smart homes, wearable devices, and next-generation robotics, creating diverse and innovative possibilities.