Publications par Personnel administratif

Description détaillée du processus du pont de masque de soudure dans PCB

La surface d'un PCB est recouverte d'une couche de laque appelée encre de masque de soudure.. C'est l'un des types d'encre les plus courants et les plus essentiels utilisés dans Fabrication de PCB. Alors qu'environ 90% du masque de soudure est vert, d'autres couleurs comme le rouge, bleu, noir, blanc, et le jaune sont également disponibles.

La fonction principale de l’encre du masque de soudure est l’isolation. Pendant le processus de soudage, il aide à prévenir les courts-circuits causés par les ponts de soudure et les dommages physiques aux traces conductrices. Il protège également contre la dégradation de l'isolation ou la corrosion causée par des facteurs environnementaux tels que la poussière et l'humidité..

Un pont de masque de soudure fait référence à la section du masque de soudure entre les ouvertures des plages de soudure des fils de composants étroitement espacés, généralement des circuits intégrés avec des broches à pas fin.. Le rôle du pont du masque de soudure est d'empêcher l'écoulement de la soudure et le pontage entre les pastilles pendant le soudage.. Pour garantir des joints de soudure fiables et éviter les courts-circuits, il est essentiel de maintenir autant que possible des ponts de masque de soudure entre les plages adjacentes.

Types de ponts de masque de soudure

Chaque disposition de PCB et densité de composants impose des exigences spécifiques. Les concepteurs de PCB doivent choisir le type de barrage de soudure approprié en fonction de ces besoins. Différents types de ponts de masque de soudure offrent divers avantages, améliorant la fiabilité et réduisant le risque de pontage par soudure.

1. Pont de masque de soudure ouvert

Un pont de masque de soudure ouvert expose des zones désignées de cuivre sur le PCB. Il fournit un espacement contrôlé entre les composants pour permettre une connexion électrique sélective. Cette technique empêche la soudure de migrer à travers la structure tout en maintenant une conductivité électrique stable.. Les barrages de soudure ouverts sont particulièrement adaptés aux hautes fréquences et aux RF (radiofréquence) applications, où un contrôle précis du flux de soudure est essentiel en raison de la sensibilité aux performances des circuits.

2. Engrener (Grille) Pont de masque de soudure

Le pont du masque de soudure en maille utilise une structure en forme de grille dans sa conception. Cette configuration permet de minimiser les contraintes thermiques lors du soudage. La disposition du maillage améliore la force d'adhérence et empêche la fissuration du matériau du masque de soudure.. Les barrages de soudure de type maillé sont particulièrement efficaces pour les grandes zones de cuivre. En intégrant ces améliorations de conception, la fiabilité mécanique et la stabilité du circuit imprimé sont considérablement augmentées.

3.Pont de masque de soudure circulaire

Lors de l'utilisation d'un pont de masque de soudure circulaire, un motif en forme d'anneau est formé autour du tampon. Cette conception permet d'éviter les pontages entre les composants dans les zones très compactes du circuit imprimé.. En raison de sa disposition structurelle, les ponts de masque de soudure circulaires permettent des opérations de soudure plus précises et plus efficaces, tout en minimisant les risques de courts-circuits.

Les barrages circulaires sont particulièrement bien adaptés aux PCB à pas fin et haute densité, où le maintien de l’intégrité des joints de soudure est crucial. Avec cette conception, les joints de soudure restent propres et uniformes, contribuer à une qualité globale constante du conseil d’administration.

Pont de masque de soudure dans le PCB

Règles et normes de conception pour le pont de masque de soudure

1. Exigences de largeur minimale

  • Conception standard:
    La largeur minimale typique d'un pont de masque de soudure est ≥ 6 mil (0.152 MM), adapté à l'électronique grand public générale et aux PCB de contrôle industriel.

  • PCB haute densité (Par exemple, Cartes HDI):
    La largeur peut être réduite à 3.2 mil (0.08 MM) ou même plus petit, en fonction des capacités du fabricant. Par exemple:

    • JLCPCB, en utilisant LDI (Imagerie directe laser) technologie, peut atteindre une largeur minimale de barrage de soudure de 2 mil (0.05 MM).

  • Emballage ultra haute densité (Par exemple, FC-BGA):
    Une plage de largeur de 0,05 à 0,08 mm est utilisée, adapté aux cartes serveurs haut de gamme et aux processeurs AI.

2. Considération sur l'espacement des tampons

La largeur du pont du masque de soudure doit être calculée en fonction de l'espacement des plots.. Une formule empirique typique est:

Largeur du pont du masque de soudure = Espacement des tampons - 2 × Largeur du tampon − 2 × Tolérance de fabrication

Exemple:
Si espacement des plots = 0.5 MM, largeur du tampon = 0.25 MM, tolérance = 0.05 MM, alors:

Largeur du pont du masque de soudure ≥ 0.05 MM

3. Exigences d'épaisseur

  • Épaisseur standard:
    La couche du masque de soudure a généralement une épaisseur de 8 à 15 μm.

    • Si trop mince: risques de rupture de soudure dus à une isolation insuffisante.

    • Si trop épais: peut affecter négativement la précision de l'assemblage.

  • Pratique recommandée:
    Utiliser plusieurs passes de sérigraphie ou de revêtement par pulvérisation pour obtenir une épaisseur ≥ 15 µm, spécialement pour les applications à haute fiabilité.

Considérations de fabrication pour les ponts de masque de soudure

La capacité de traitement des ponts de masque de soudure est affectée par la couleur de l'encre, épaisseur du cuivre, et disposition du tableau:

  • L'encre verte pour masque de soudure offre un meilleur contrôle du processus et peut s'adapter à des barrages de soudure plus petits que les encres colorées..

  • Un cuivre plus épais nécessite des ponts de masque de soudure plus larges, tandis que le cuivre plus fin permet des barrages de soudure plus étroits et plus stables..

1. Pour une épaisseur de cuivre de base ≤ 1 oz:

  • Vert & Vert mat: Pont de masque de soudure ≥ 4 mil

  • Autres couleurs: Pont de masque de soudure ≥ 5 mil

  • Sur de grandes zones de coulée de cuivre: Pont de masque de soudure ≥ 8 mil

2. Pour une épaisseur de cuivre de base de 2 à 4 oz:

  • Noir brillant, Noir mat, Blanc: Pont de masque de soudure ≥ 6 mil

  • Sur de grandes zones de coulée de cuivre: Pont de masque de soudure ≥ 8 mil

3. Ponts de masque de soudure entre de grandes zones de cuivre (Surfaces HASL):

  • Pour éviter les ponts de soudure entre les grandes zones de cuivre (surtout avec finition HASL), la largeur de la digue de soudure doit être ≥ 8 mil.

Pont de masque de soudure dans PCB-1

Principaux scénarios d'application du pont de masque de soudure

1. Forfaits à pas fin

Pour les circuits intégrés avec boîtier à pas fin tels que QFP (Forfait Quad Plat), LGA (Réseau de grille terrestre), et BGA (Tableau de grille à billes), l'espacement des tampons est généralement inférieur à 0.5 MM.
Les ponts de masque de soudure sont essentiels pour empêcher les ponts de soudure entre les pastilles adjacentes, ce qui pourrait autrement conduire à des courts-circuits.
Ceci est particulièrement critique dans les processus de soudage automatisés, où la pâte à souder a tendance à se répandre sous l'effet de la chaleur; sans ponts de masque de soudure, le pontage par soudure devient plus probable.

2. Zones de routage à haute densité

En IDH (Interconnexion à haute densité) PCBS, où le routage est dense, la soudure peut facilement s'écouler entre les plages adjacentes si des ponts de masque de soudure ne sont pas implémentés.
Les barrages de soudure agissent comme des barrières physiques, améliorer l'isolation électrique et assurer la fiabilité et la sécurité du circuit.

3. Prévention des projections de billes de soudure

Les ponts de masque de soudure aident à sceller les espaces entre les plaquettes, réduisant le risque d'éclaboussures de billes de soudure dans des zones involontaires pendant le brasage par refusion.
Cela améliore considérablement la qualité du soudage et réduit les défauts potentiels après le soudage..

4. Cartes multicouches ou soudure inférieure

Dans les assemblages PCB double face, lorsque les composants sont soudés sur la couche inférieure, des ponts de masque de soudure peuvent être appliqués entre les pastilles sur la couche supérieure pour éviter la contamination par le flux ou la soudure des zones qui ne doivent pas être soudées.
Ceci est particulièrement utile dans soudure d'onde ou applications de brasage sélectif.

Conclusion

Les ponts de masque de soudure sont une structure essentielle pour garantir la fiabilité du soudage des PCB. Leur conception doit tenir compte de l’espacement des plots, capacité de fabrication, et processus de soudure.
En sélectionnant les largeurs de barrage de soudure appropriées, optimisation des propriétés du matériau du masque de soudure, et collaborer étroitement avec les fabricants de PCB, on peut améliorer considérablement le rendement des PCB et la fiabilité à long terme.

Alors que les produits électroniques continuent d'évoluer vers des conceptions à densité plus élevée et à pas plus fin, les technologies des masques de soudure continueront de progresser pour répondre aux exigences croissantes de miniaturisation et de performance.

Quel est le processus de fabrication des circuits imprimés en céramique?

With the continuous advancement of electronic technology, the market demand for circuit boards with greater robustness, higher reliability, and enhanced performance is on the rise—driving the widespread adoption of ceramic Fabrication de PCB technologie.
Compared with traditional PCBs that use fiberglass or plastic substrates—which perform adequately in standard applications—these conventional materials often fall short in harsh or high-performance environments. PCB en céramique, en revanche, have emerged as the ideal solution for industries with stringent system stability requirements, thanks to their superior thermal conductivity, outstanding structural strength, and exceptional environmental adaptability.

The production of ceramic PCBs involves a series of precise and specialized processes aimed at transforming high-performance ceramic materials into highly reliable electronic substrates. These PCBs are widely used in aerospace, électronique automobile, instruments médicaux, and telecommunications equipment, playing a vital role in ensuring the durability and overall performance of electronic components.
This article will provide a systematic overview of the PCB en céramique manufacturing process, the key material compositions, and a detailed comparison of their advantages over traditional PCB solutions.


Qu'est-ce qu'un PCB en céramique?

UN PCB en céramique (Ceramic Printed Circuit Board) is a high-performance circuit board that uses ceramic materials as its substrate. It is fabricated by directly bonding copper foil to ceramic bases such as aluminum oxide (Al₂O₃) ou nitrure d'aluminium (Aln), offering excellent thermal conductivity, high-frequency electrical performance, et résistance mécanique. Par conséquent, ceramic PCBs are widely employed in high-power, haute fréquence, and extreme-environment electronic devices.

As a next-generation high-performance electronic carrier, ceramic PCBs excel in thermal conductivity, isolation électrique, high-temperature resistance, and dimensional stability. These properties make them indispensable in demanding fields such as aérospatial, équipement militaire, véhicules à énergie nouvelle, lasers, high-power modules, RF communications, and medical electronics—all of which require exceptional reliability and performance. Compared to traditional FR4 organic materials, ceramic PCBs offer significant advantages in terms of heat dissipation, frequency response, perte diélectrique, et résistance mécanique.

Types of Ceramic Printed Circuit Boards

Ceramic PCB manufacturing processes allow for the production of several types of ceramic PCBs, each tailored to specific applications. These include:

Céramique cocuite à haute température (HTCC)

HTCC ceramic printed circuit boards are produced by integrating conductive layers with ceramic substrates through a high-temperature co-firing process that operates at temperatures above 1600°C. The resulting products offer enhanced integration, mechanical stability, and compatibility with high temperatures and environmental stress. HTCC dielectric substrates are commonly used in aerospace, militaire, and high-power applications where optimal performance stability under extreme conditions is essential.

Céramique cocuite à basse température (LTCC)

LTCC PCBs are manufactured using a similar co-firing technique but at a lower temperature, typically around 850°C. These boards are ideal for high-frequency signals, such as those used in RF modules and telecommunications equipment. LTCC PCBs meet high electrical standards and are the preferred choice for compact, miniaturized, and high-frequency circuits.

Multilayer Ceramic Printed Circuit Boards

Multilayer ceramic PCBs involve the use of multiple layers of ceramic materials, each containing uniquely printed circuits. These layers are stacked and fused together during the ceramic Processus de fabrication de PCB, resulting in a compact and highly dense final product. Multilayer ceramic PCBs are widely used in microelectronics, dispositifs médicaux, and satellite communication systems, where both size and performance are critical.

PCB en céramique

Ceramic PCB Manufacturing Process

Ceramic printed circuit boards are high-performance electronic components characterized by high temperature resistance, haute fréquence, high voltage, et haute fiabilité. They are widely used in aerospace, militaire, télécommunications, et d'autres champs. The following outlines the typical manufacturing process of ceramic PCBs.

1. Raw Material Preparation

The performance of ceramic PCBs heavily depends on the purity, particle size distribution, and chemical stability of the ceramic powder substrate. Donc, the first step is the careful selection and treatment of base materials.

Raw Materials Composition:

  • Ceramic powders: such as aluminum oxide (Al₂O₃), nitrure d'aluminium (Aln), zirconium oxide (ZrO₂), magnesium oxide (MgO), with purity exceeding 99%;

  • Organic binders: such as PVA (polyvinyl alcohol), polyethylene glycol, used for temporary binding;

  • Solvents and additives: used to adjust flowability and film formation, including ethanol, acétone, butanone, dispersants, etc..

Flux de processus:
Ceramic raw material selection → ball milling and mixing → vacuum de-airing → drying and granulation → storage for use

Control Focus:

  • Particle size controlled between 0.5 à 3 µm;

  • Uniform distribution to prevent sintering defects like porosity or cracking;

  • Strict control of moisture and impurities to avoid gas bubbles during sintering.

2. Ceramic Slurry Printing or Lamination Molding

The mixed ceramic powder, organic binder, and solvent slurry is printed onto ceramic substrates to form the required circuit patterns and component mounting locations. The forming method varies with different ceramic PCB types:

  • UN. Thick Film/Thin Film Printing (for single-layer ceramic boards):
    Ceramic or conductor slurry is printed on the substrate via screen printing or inkjet printing;
    Functional patterns like circuits, coussinets, capacitive layers, and inductive patterns are formed.

  • B. Green Tape Lamination (for LTCC/HTCC):
    Ceramic powders are mixed intogreen tapesand laminated via hot pressing to form multilayer structures;
    Conductive circuits are printed on each layer, with vias created to establish electrical connections.

Core Equipment:

  • Automatic screen printers

  • Precision laminating alignment machines

  • Vacuum presses / isostatic presses (the latter for complex shapes)

3. Drying and Pre-curing

Printed or laminated substrates are placed in a temperature-controlled oven for low-temperature drying at 80~120°C for 1-2 heures.
This step evaporates solvents in the slurry, enhancing initial pattern stability and preventing defects such as bubbles or delamination during subsequent sintering.

Key Points:

  • Uniform drying with controlled temperature rise to avoid internal stress buildup;

  • Conducted in cleanroom or controlled environment to prevent dust contamination.

4. High-Temperature Sintering (Densification)

This is the critical step for ceramic PCB formation.

Sintering Process:

  • Dried ceramic boards are placed in a high-temperature furnace following a programmed sintering curve;

  • Temperatures typically range from 1300 to 1650°C;

  • Sintering duration is 2-4 heures (including heating, soaking, et phases de refroidissement);

  • Furnace atmosphere can be air, nitrogen, hydrogen, or vacuum depending on ceramic type and metallization method.

Sintering Outcomes:

  • Ceramic powder grains reorganize, forming a continuous, dense polycrystalline structure;

  • Final boards achieve target mechanical strength, dimensional stability, thermal conductivity, et isolation électrique.

5. Surface Metallization (Conductive Circuit Formation)

After sintering, ceramic substrates are insulating and require metallization to deposit conductive layers forming the circuit patterns.

Common Metallization Techniques:

Process Name Principle & Caractéristiques Applications typiques
DPC (Cuivre plaqué directement) Sputtering TiW/Cu seed layer + copper electroplating; high precision (down to 50 µm) Haute fréquence, high-density packaging
DBC (Cuivre lié directement) Copper foil bonded to ceramic via high-temperature eutectic reaction; épaisseur de cuivre jusqu'à 800 µm High-current modules, appareils électriques
Electroless Ni/Cu/Au Plating Surface activation followed by chemical deposition of multilayer Ni/Cu/Au Chip carriers, solder pins
Screen-Printed Conductive Paste Sintered silver paste, gold paste, suitable for high-frequency and thick-film circuits Microwave, radar applications

6. Soldering and Component Mounting

Following metallization and patterning, electronic components are soldered onto the circuits.

Common Techniques:

  • Soudeur de reflux (SMD assembly)

  • Laser welding, ultrasonic welding (for leads or power pins)

  • Silver paste sintering (especially suitable for IGBT chip mounting)

Process Features:

  • Ceramic PCBs withstand high temperatures (>800° C), compatible with various high-temperature soldering methods;

  • Strong copper-ceramic bonding endows excellent thermal shock resistance and high current capacity.

7. Essai

Completed PCBs undergo rigorous inspections, y compris:

  • Tests électriques: Verify correct circuit connections, no shorts or open circuits, ensuring reliable operation with connected devices.

  • Thermal Testing: Assess heat conduction and convection performance, crucial for PCBs exposed to high temperatures.

  • Mechanical Testing: Apply bending, vibration, or other stresses to test mechanical resilience.

Whether used in satellites, electric vehicles, ou des dispositifs médicaux, each test is critical to ensure reliable operation of ceramic PCBs in their intended applications.

8. Façonner, Coupe, and Packaging

  • Façonner:
    Mechanical drilling is unsuitable for ceramics; laser processing (UV, CO₂) is employed for drilling, V-cuts, grooves, and vias with precision control.

  • Cleaning and Packaging:
    Ultrasonic cleaning with deionized water;
    Drying followed by vacuum sealing;
    For sensitive products, desiccants and anti-static bags are added.

Conclusion

The manufacturing of ceramic PCBs is a highly complex and precise technological process, capable of producing circuit boards that combine exceptional thermal conductivity, résistance mécanique, and electrical performance. From the selection of raw materials to the formation of circuit patterns and final testing, every step is meticulously controlled to ensure outstanding performance and reliability of the finished product.

In fields with stringent demands for durability, heat dissipation efficiency, and electrical stability, ceramic PCBs have become an indispensable solution. From aerospace to medical instruments, from automotive electronics to telecommunications, ceramic-based circuit boards provide a solid foundation for the next generation of high-tech applications. As the demand for high-performance electronic systems continues to rise, ceramic PCBs will play an increasingly critical role in enhancing device reliability and operational efficiency.

Quelle est la différence entre les PCB en céramique et FR4?

In the current PCB industry, both ceramic PCB substrates and FR4 PCB substrates are commonly used.FR4 substrates are widely applied due to their low cost, while ceramic PCB substrates are more high-end with relatively higher costs. Many customers are still unfamiliar with ceramic PCBs, so in this article, we will compare ceramic PCBs and FR4 PCBs from several aspects including materials, performance, processus de fabrication, et applications.

Qu'est-ce qu'un PCB en céramique?

UN PCB en céramique (Circuit Circuit Bancar) is a type of circuit board manufactured using ceramic materials as the base. Unlike conventional substrates made from glass fiber-reinforced epoxy (FR4), ceramic PCBs offer superior thermal stability, résistance mécanique, dielectric properties, et une durée de vie plus longue.
They are primarily used in high-temperature, haute fréquence, and high-power applications—such as LED lighting, amplificateurs de puissance, semiconductor lasers, RF transceivers, capteurs, and microwave devices.

What is an FR4 PCB?

FR4 is a composite material made primarily of woven fiberglass cloth and epoxy resin, compressed into multiple layers. It is one of the most widely used substrate materials for printed circuit boards (PCBS).
FR4 is favored for its excellent insulation, résistance mécanique, faible coût, and ease of processing. Its key properties include a low dielectric constant, résistance aux hautes températures, good flame retardancy, strong mechanical performance, and outstanding chemical stability. These characteristics make FR4 the most commonly used PCB base material in a wide range of electronic products.

What Is the Difference Between Ceramic PCB and FR4?

1. Different Base Materials Lead to Different Properties

Ceramic PCBs use ceramic substrates such as alumina (Al₂O₃), nitrure d'aluminium (Aln), or silicon nitride (Si₃N₄), which offer excellent thermal conductivity and insulation. En revanche, FR4 boards are made of fiberglass-reinforced epoxy laminate, which has relatively poor thermal conductivity and lacks inherent insulation performance.

2. Significant Differences in Thermal Conductivity and Insulation

Ceramic PCBs feature thermal conductivity ranging from 25 W/m·K to 230 W/m·K, depending on the material:

  • Alumina: 25–30 W/m·K

  • Aluminum nitride: 170 W/m·K or higher

  • Nitrure de silicium: 80–95 W/m·K

By contrast, FR4 PCBs typically offer thermal conductivity of only a few W/m·K. De plus, FR4 boards require an additional insulation layer to help dissipate heat, whereas ceramic PCBs are inherently excellent insulators, with insulation resistance reaching ≥10¹⁴ Ω·cm.

3. Differences in Cost and Production Lead Time

Ceramic PCBs are significantly more expensive and have longer lead times compared to FR4 boards. While an FR4 prototype may cost only a few hundred RMB and be completed within 24 heures, a ceramic Prototype PCB could cost several thousand RMB and typically takes 10–15 jours for production.

PCB en céramique

PCB en céramique

4. Differences in Performance Advantages

Advantages of Ceramic PCBs:

  • Haute fréquence, High-Speed Performance:
    Very low dielectric constant (<10) and dielectric loss (<0.001), ensuring fast signal transmission and low latency—ideal for 5G communications et systèmes radar.

  • Dissipation de chaleur supérieure:
    High thermal conductivity helps quickly dissipate heat, reducing thermal stress on power devices and extending lifespan—for example, dans Éclairage LED et automotive ECUs.

  • Environmental Resilience:
    Operates reliably under harsh conditions: wide temperature range (-55°C to 850°C), radiation resistance, and vibration resistance—suitable for aérospatial et military applications.

  • High Integration Capability:
    Compatible with LTCC/HTCC technologies for 3D integration, reducing size in semiconductor modules et intelligent power components.

Advantages of FR4 PCBs:

  • Cost-Effective:
    Material costs are about one-third that of ceramic PCBs, making them ideal for production de masse.

  • Mature Manufacturing Processes:
    Well-established SMT support and short turnaround times—double-sided boards can be produced in just a few days.

  • Stable Electrical Performance:
    Dielectric constant of 4.0–4.7 and dielectric loss of 0.01–0.03, suitable for low- to mid-frequency applications such as consumer electronics and telecom devices.

5. Different Manufacturing Processes

Céramique Fabrication de PCB involves several complex processes such as DPC, DBC, thin-film, thick-film, HTCC, et LTCC technologies—each with unique requirements. En revanche, FR4 PCB production is simpler and more standardized. Pour multilayer ceramic PCBs, the process becomes even more complex and technically demanding compared to multilayer FR4 boards, resulting in higher cost and difficulty.

6. Different Market Applications

Thanks to their high thermal conductivity, excellent insulation, high-frequency capability, and resistance to extreme conditions, PCB en céramique are widely used in:

  • High-power applications

  • High-current circuits

  • High-frequency systems

  • Environments requiring high thermal stability and insulation

D'autre part, FR4 PCBs are more broadly adopted across various industries due to their lower cost, shorter production cycle, and high demand—making them the go-to choice for électronique grand public, télécommunications, et general-purpose electronics.

Ceramic PCB vs FR4 PCB

Fonctionnalité PCB en céramique FR4 PCB
Matériel Céramique (Aln, Al₂O₃, Beo) Fibre de verre + epoxy (FR4)
Conductivité thermique Haut Faible
Heat Resistance Très élevé Moderate
Résistance mécanique Brittle Tough/Flexible
Coût Haut Faible
Applications High-power, high-temp General electronics

Comparison and Selection Guide for Ceramic PCBs and FR4 PCBs

Selection Criteria PCB en céramique FR4 PCBs
Performance Priorities High-frequency and high-speed performance, gestion thermique, high-temperature resistance, radiation hardness Rentabilité, manufacturing maturity, electrical stability for mid/low-frequency applications
Cost Sensitivity Haut (material and processing costs exceed FR4 by 3x or more) Faible (ideal for mass production)
Scénarios d'application typiques Aérospatial, 5G communications, électronique automobile (high-power modules) Électronique grand public, communication devices, contrôles industriels
Exigences de fiabilité Haut (requires CTE-matched designs) Moderate (conventional UL94 V-0 flame-retardant standards)

Future Trends and Decision-Making Guidance

Technological Evolution

  • PCB en céramique: With the growing maturity of LTCC/HTCC processes, ceramic PCBs are expected to see wider adoption in 5G base stations, electric vehicle battery management systems (GTC), and other high-performance applications.

  • FR4 PCBs: By incorporating high-frequency materials (Par exemple, PTFE composites) and eco-friendly technologies (Par exemple, lead-free processes), FR4 PCBs continue evolving to meet new market demands.


Selection Decision Tree

  • Haute fréquence, high-speed requirements →
    Choose ceramic PCB or high-frequency FR4 materials (Par exemple, Rogers RO4003).

  • High-power thermal management needs →
    Choose ceramic PCB or aluminum-based PCB.

  • Cost-sensitive projects →
    Choose FR4, ideally with 96% alumina hybrid designs for better thermal performance at lower cost.

  • Extreme environments (high temperature/radiation) →
    Choose ceramic PCB, particularly aluminum nitride (Aln) substrats.


Conclusion

The core difference between PCB substrat en céramique and FR4 substrate lies in material properties and application direction. Ceramic substrate is based on ceramic materials such as alumina and aluminum nitride, with high thermal conductivity, excellent electrical insulation and outstanding high temperature resistance, suitable for power electronics, Éclairage LED, radio frequency communication and other fields with extremely high requirements for heat dissipation and stability; while FR4 substrate is composed of glass fiber cloth and epoxy resin, with good mechanical strength and processability, faible coût, and is the first choice for most common electronic products such as consumer electronics, computers and industrial control.

Classification des technologies de montage de surface pour PCB en céramique

Ceramic circuit boards are a new class of materials known for their high-temperature stability, excellent insulation properties, low thermal expansion coefficient, and superior processability. These characteristics make them widely used in high-temperature and high-frequency circuits, électronique de puissance, and electromagnetic compatibility applications.

As electronic technologies continue to advance, the use of ceramic PCBs is becoming increasingly prevalent. Among their key technological aspects, Technologie de montage de surface (Smt) plays a crucial role. This article explores the classification of SMT techniques for ceramic PCBs and analyzes their prospects in the electronics industry.

Classification of Surface Mount Technologies for Ceramic PCBs

1. Thin Film Method (DPC – Direct Plated Copper)

Processus: A metal seed layer is deposited on the ceramic surface using magnetron sputtering or vacuum evaporation, followed by electroplating to thicken the copper layer. Photolithography and etching are then used for circuit patterning.
Caractéristiques techniques:

  • Haute précision: Line width/spacing can reach 20μm, suitable for high-frequency, high-density circuits.

  • Material Compatibility: Supports substrates such as alumina (Al₂O₃) and aluminum nitride (Aln), offering excellent surface flatness.
    Applications typiques:

  • Éclairage LED: High thermal conductivity (AlN substrate up to 230 W/m·K) ensures efficient heat dissipation.

  • Microwave & RF Devices: Low dielectric loss (ε_r ≈ 9) meets 5G/6G communication requirements.

2. Thick Film Method (TFC – Thick Film Ceramic)

Processus: Conductive paste containing metal and glass powders is screen-printed onto a substrat en céramique and then sintered at high temperatures to form circuits.
Caractéristiques techniques:

  • Cost-Effective: Simple process with low equipment costs, though line width precision is limited (≥0.1 mm).

  • Material Constraints: Conductive layer thickness is typically 10–20μm, suitable for low- to medium-power applications.
    Applications typiques:

  • Électronique automobile: Used in ECUs and control modules requiring resistance to high temperatures (>150° C) and mechanical vibration.

3. Co-fired Method (HTCC / LTCC)

High-Temperature Co-fired Ceramic (HTCC):

  • Processus: Sintered at 1650–1850°C, involving multilayer ceramic green tapes printed with circuits and laminated.

  • Avantages: Haute résistance mécanique (flexural strength >400 MPa), ideal for aerospace applications.

Céramique co-cuite à basse température (LTCC):

  • Processus: Sintered at 800–950°C; allows integration of passive components like resistors and capacitors.

  • Avantages: Excellent high-frequency performance (Q factor >500), suitable for 5G filters.

4. Direct Copper Bonding Method (DBC / AMB)

Cuivre lié directement (DBC):

  • Processus: A Cu/O eutectic liquid phase is formed at 1065–1083°C, bonding copper foil directly to the ceramic substrate.

  • Avantages: High thermal conductivity (Al₂O₃ substrate up to 25 W/m·K), widely used in IGBT modules.

Active Metal Brazing (AMB):

  • Processus: Utilizes active solders (containing Ti, Ag) to enhance bonding strength and reliability.

  • Avantages: Excellent thermal cycling performance (survives 1000 cycles from –55°C to 200°C without failure).

PCB en céramique

Avantages de la technologie de montage en surface (Smt) for Ceramic PCBs

  1. Haute conductivité thermique:
    Surface mount technology enhances the thermal performance of ceramic PCBs, improving the overall reliability and efficiency of electronic devices.

  2. Superior Wear Resistance:
    SMT improves the wear resistance of ceramic substrates, thereby extending the operational life of the equipment.

  3. High Mechanical Strength:
    SMT increases the mechanical robustness of ceramic PCBs, ensuring enhanced safety and durability of electronic systems.

  4. Environmental Friendliness:
    Ceramic PCBs with advanced SMT can reduce electromagnetic emissions, contributing to better environmental compliance and reduced interference.

  5. Design Flexibility:
    SMT enables more flexible design configurations, allowing ceramic PCBs to meet the varying demands of different electronic applications.


SMT Process Flow for Ceramic PCBs

The SMT process for ceramic PCBs is similar to that for traditional organic substrates, but must be optimized to accommodate the unique properties of ceramic materials:

  1. Substrate Preparation and Surface Treatment

    • Cleaning and Polishing: Remove surface contaminants to ensure flatness (surface roughness Ra < 0.1 µm).

    • Traitement de surface: Use Electroless Nickel Immersion Gold (Accepter) or Electroless Nickel Palladium Immersion Gold (Enépique) for enhanced solderability. ENEPIG includes a palladium layer to reduce “tampon noir” defects, making it ideal for fine-pitch components such as BGAs.

  2. Impression de pâte de soudure

    • Paste Selection: Choose high-viscosity lead-free solder paste (Par exemple, SnAgCu alloys) to prevent slump.

    • Printing Parameters: Precisely control squeegee pressure and speed to ensure consistent solder paste thickness (typically 25–75 μm).

  3. Component Placement and Reflow Soldering

    • High-Speed Placement Machines: Must be adapted for the rigidity of ceramic substrates to minimize mechanical stress.

    • Reflow Profile: Use a stepped temperature ramp to mitigate stress from mismatched thermal expansion between ceramic and components. Peak temperature should be maintained between 240–260°C. Nitrogen atmosphere is preferred to reduce oxidation.

  4. Inspection et reprise

    • AOI (Inspection optique automatisée): Used to check solder paste quality and component alignment.

    • Inspection des rayons X: Essential for bottom-terminated components like BGAs, to detect voids in solder joints.

    • Rework Process: Utilize localized heating platforms with ±2°C accuracy to prevent damage to adjacent components.


Conclusion

The classification of surface mount technologies for ceramic PCBs must consider a combination of process capability, material properties, and end-use application. Current trends are moving toward ultra-fine precision (line widths <10 µm), high-frequency performance (5G+), and eco-friendly practices (lead-free and recyclable). Innovations such as 3D Impression and laser activation are emerging as key enablers. Material choices must balance performance with cost efficiency.

With the rapid rise of industries such as new energy vehicles and 5G communications, demand for ceramic PCBs is expected to grow steadily. Future technological advancements will focus on cross-disciplinary integration and intelligent manufacturing.

Analyse de la technologie d'emballage de PCB en céramique

L'emballage en céramique est une méthode permettant d'enfermer des composants électroniques dans un substrat en céramique. Ce type d'emballage offre une résistance supérieure à la chaleur, résistance à l'humidité, résistance à la corrosion, et immunité aux interférences électromagnétiques. Il contribue également à réduire le bruit électrique et thermique à l'intérieur de l'emballage., ce qui le rend idéal pour les appareils électroniques hautes performances tels que les amplificateurs de puissance haute fréquence, émetteurs-récepteurs de données à grande vitesse, et amplificateurs à faible bruit.

Avantages de l'emballage en céramique:

  • Haute résistance à la chaleur: Les matériaux céramiques ont généralement des points de fusion élevés et peuvent résister à des températures élevées.. Cela permet aux emballages en céramique de fonctionner de manière fiable dans des environnements à haute température sans dégradation des performances..

  • Excellente résistance à l'humidité: Avec de fortes caractéristiques d'étanchéité et de résistance à l'humidité, les matériaux céramiques sont bien adaptés à une utilisation dans des conditions humides. Leurs performances restent stables malgré les fluctuations d’humidité.

  • Résistance exceptionnelle à la corrosion: Les matériaux céramiques sont très résistants à la plupart des produits chimiques, y compris les acides, socles, sels, et solvants organiques. Cela les rend adaptés à une utilisation dans des environnements chimiques difficiles sans risque de défaillance induite par la corrosion..

  • Interférence électromagnétique supérieure (EMI) Blindage: Les céramiques offrent d'excellentes propriétés de blindage EMI, minimiser l’impact des interférences électromagnétiques externes. Cela permet un fonctionnement stable dans les applications haute fréquence sans perte de performances due aux EMI.

Présentation du processus d'emballage des PCB en céramique

1. Étape de préparation des copeaux

  • Découpage de plaquettes:
    Utilisation d'une technologie de découpe laser de précision, la plaquette est segmentée en puces individuelles avec une précision au micron, garantissant des dimensions précises des puces pour répondre aux exigences d'assemblage des substrats céramiques.

  • Nettoyage des copeaux:
    Nettoyage chimique en plusieurs étapes, y compris dégraissage avec des solvants organiques et rinçage à l'eau déminéralisée, élimine les résidus de coupe pour éviter une mauvaise soudure ou une panne électrique.

2. Fabrication de substrats en céramique

  • Formation de substrat:

    • Coulée de bande: Boue de céramique (Par exemple, alumine, nitrure d'aluminium) est moulé en feuilles minces, avec tolérance d'épaisseur contrôlée à ± 5 μm, adapté à la production en grand volume.

    • Pressage à sec: Combiné avec un pressage isostatique, ce procédé permet la fabrication de substrats de forme complexe avec une uniformité de densité améliorée.

  • Métallisation:

    • Cuivre lié directement (DBC): À des températures élevées, le brasage actif crée un lien fort entre les couches de céramique et de cuivre, atteindre des épaisseurs de cuivre supérieures à 300 μm.

    • Cuivre plaqué directement (DPC): Le cuivre est électrolytique après motif photolithographique, permettant le routage multicouche et via le remplissage, avec une largeur/espacement de ligne jusqu'à 10 μm.

  • Forage au laser:
    La technologie laser avancée forme des microvias (diamètre <0.06MM) avec parois lisses (rugosité <0.3µm), permettant des interconnexions haute densité.

3. Intégration puce-substrat

  • Attachement de matrice:
    Les adhésifs à haute conductivité thermique tels que la pâte d'argent sont distribués avec un équipement de précision pour monter les puces sur des zones désignées du substrat.. Le faible retrait après durcissement minimise le stress thermique.

  • Soudure:
    Pour les appareils haute puissance, le brasage par refusion ou le soudage par ultrasons est utilisé pour former des liaisons métallurgiques, assurant à la fois la conductivité électrique et la stabilité mécanique.

4. Liaison de fils et emballage

  • Techniques de liaison:

    • Liaison de fils d'or/cuivre: La compression thermique ou l'énergie ultrasonique est utilisée pour connecter les fils de liaison entre les pastilles de puce et le substrat.. Les liaisons doivent supporter des cycles thermiques et des vibrations mécaniques.

    • Liaison à puce retournée (FC): La puce est retournée et directement interconnectée avec le substrat, éliminant les fils de liaison et minimisant les effets parasites — idéal pour les applications haute fréquence.

  • Encapsulation:

    • Étanchéité hermétique: Soudage parallèle ou scellement de frittes de verre (Par exemple, Systèmes PbO-B₂O₃-ZnO) est réalisé à ~450°C, atteindre des taux de fuite inférieurs à 1×10⁻⁸ Pa·m³/s.

    • Moulage de plastique: Pour applications non hermétiques, une encapsulation en résine époxy ou en silicone est utilisée pour améliorer la durabilité environnementale.

5. Post-traitement et tests

  • Tests électriques:
    Intégrité du signal, correspondance d'impédance, et performances haute fréquence (10Transmission –20 GHz) sont vérifiés à l'aide d'outils tels que des analyseurs de réseau et des oscilloscopes.

  • Tests de fiabilité:

    • Cyclisme Thermique: Simule les variations de température de -65°C à +250°C pour évaluer la fiabilité de la liaison substrat-puce.

    • Tests de chocs mécaniques: Évalue la résistance aux vibrations pour garantir la stabilité opérationnelle dans l’aérospatiale et d’autres environnements exigeants.

emballage PCB en céramique

Technologies de processus clés dans l'emballage de circuits imprimés en céramique

1. Traitement laser de précision
Les technologies de perçage et de découpe au laser atteignent une précision au micron, permettant un routage haute densité (largeur/espacement des lignes jusqu'à 10 μm) et interconnexion 3D (couche intermédiaire via un diamètre aussi petit que 50 μm).

2. Métallisation et configuration de circuits
Processus DBC et DPC, combiné avec la photolithographie, créer des modèles de circuits haute résolution. Les substrats en nitrure d'aluminium offrent une conductivité thermique de 180 à 230 W/m·K et un coefficient de dilatation thermique (ETC ≈ 4,5 ppm/°C), puces de silicium étroitement assorties.

3. Technologie de co-cuisson multicouche

  • LTCC (Céramique cocuite à basse température):
    Cuisson à ~850°C, intègre plusieurs couches de céramique et traces métalliques, permettant l'intégration de composants passifs. Idéal pour les antennes à ondes millimétriques 5G.

  • HTCC (Céramique cocuite à haute température):
    Cuisson à ~1600°C, offre une haute résistance mécanique (≥400MPa en flexion trois points) pour modules de puissance pour l'aérospatiale.


Applications de l'emballage de circuits imprimés en céramique

Électronique automobile

  • Unités de commande du moteur, Systèmes de sécurité (ABS, ESP):
    Conçu pour résister à des températures élevées, humidité, et vibration.

  • Systèmes de gestion de batterie:
    Les substrats céramiques optimisent la conduction du courant et la dissipation thermique, améliorer la sécurité des véhicules électriques.

Télécommunications

  • 5Antennes de station de base G et modules RF:
    Une faible perte diélectrique garantit l'intégrité du signal.

  • Appareils de communication par satellite:
    Excellente résistance aux radiations qui s'adapte à l'environnement spatial difficile.

Aéronautique et Défense

  • Systèmes de guidage de missiles, Modules émetteurs-récepteurs radar:
    Les substrats en nitrure d'aluminium supportent des températures extrêmes et des chocs mécaniques.

  • Électronique militaire:
    La résistance à la corrosion garantit un fonctionnement fiable dans des conditions de champ de bataille.

LED et électronique haute puissance

  • Éclairage LED haute puissance:
    La conductivité thermique améliorée améliore l'efficacité lumineuse de plus de 30% et prolonge la durée de vie.

  • Refroidisseurs de semi-conducteurs et radiateurs électroniques:
    La capacité de courant élevée prend en charge un fonctionnement soutenu à haute puissance.

Modules de puissance à semi-conducteurs

  • IGBT et substrats MOSFET:
    Nitrure de silicium (Si₃N₄) substrats à très haute résistance à la flexion (>800 MPa) sont bien adaptés aux applications haute tension.


Conclusion

En résumé, Le boîtier en céramique pour PCB est devenu une technologie vitale pour les applications électroniques haut de gamme en raison de ses excellentes performances thermiques., isolation électrique, et résistance aux températures élevées et à la corrosion. Comme des industries comme les communications 5G, électronique de puissance, et les véhicules électriques continuent d'évoluer, la demande d’emballages en céramique devrait croître rapidement. Il jouera un rôle de plus en plus important dans l’amélioration des performances des appareils et de la fiabilité globale du système..

Assemblage de circuits imprimés pour équipement médical

In this era of rapid development of science and technology, medical equipment is increasingly important for the protection of human health. Le PCBA (Assemblage de la carte de circuit imprimé) inside the device, as its core component, the quality of its processing and assembly has a direct impact on the performance and stability of the device. Donc, as a purchasing staff of electronic equipment manufacturers, in-depth understanding of the various aspects of medical PCBA processing and assembly is particularly critical. Suivant, we will go into this field together, detailed analysis of medical PCBA processing and assembly process of several core links.

Five core advantages of medical electronics PCB assembly

1. Functional core platform
As the “central nerve” of medical electronics, PCB is responsible for signal acquisition, processing and transmission.
Typical applications include:

Complex signal processing in high-end medical imaging equipment (par exemple. CT, IRM).

High-speed data processing in vital signs monitoring systems such as electrocardiogram (ECG) and electroencephalogram (EEG).

Electronic control units for sophisticated therapeutic equipment such as ventilators and defibrillators

2. Technology Driver for Miniaturization
Reduces the size of medical electronic devices by up to 20% while improving functional integration through High Density Interconnect (HDI) technologie.
Key Application Example:

Non-invasive blood glucose meters Integrated multi-layer flexible circuit boards (jusqu'à 10 couches)

Compact probe driver circuits for portable ultrasound systems

Ultra-mince, biocompatible PCB structures for implantable devices.

3. Core Carrier of Intelligent Healthcare
Supports multi-sensor system integration and edge intelligent computing, and is a key component in the upgrade of intelligent healthcare.
Typical smart scenarios:

Intelligent infusion management system, combining temperature, flow rate and pressure sensing.

Remote diagnosis and treatment equipment, realizing dual-mode connection between 5G and Wi-Fi.

AI-assisted diagnostic equipment embedded with edge computing chips to improve analysis efficiency.

4. Highly Reliable Technology Guarantee
fully complies with international medical electronics standards to ensure safe and stable product operation.
Certification and testing include:

IPC-A-610 Level 3 assembly standard

ISO 10993 biocompatibility certification

Continuous aging test up to 96 hours or more
Critical process control:

Medical grade lead-free soldering technology

Conformal coating treatment for moisture, mold and salt spray resistance

Comprehensive AOI automatic optical inspection + flying probe electrical test

5. Innovation and R&D Accelerator
Rapid prototyping capability to significantly shorten the product development cycle.
Features include:

From design drawings to physical prototypes in as little as 2 semaines

Supports process validation for over 10 specialty functional materials
Emerging Application Scenarios:

Flexible and extensible circuits for wearable health devices.

Grande vitesse, high-precision control boards for surgical robots

Small implantable circuit systems for neuromodulators

PCB médical

Precision planning in pcb design stage

1. Functional positioning and structural layout optimization
Medical devices pose a higher challenge to the precision of PCBA design due to their complex functions. Design engineers need to rationally configure the size ratio, layer structure and device layout of the PCB board according to the core functions of the device. During the design process, the electrical characteristics, heat dissipation efficiency, compatibilité électromagnétique (EMC) and manufacturing process suitability must be considered simultaneously. With the help of professional EDA software, we ensure that the production process is optimized while the performance meets the standard.

2. Material Selection and Quality Assurance
The overall performance of PCBAs is highly dependent on the reliability of the materials used. The substrates, components and soldering materials commonly used in medical PCBs must meet the standards of medical grade and have the characteristics of high temperature resistance, corrosion resistance and non-toxicity. In the material preparation stage, all key materials should be comprehensive quality inspection, strict control to ensure that it meets the requirements of the medical industry for safety and stability.

High-precision execution of PCB manufacturing

1. Fine control of process flow
PCB, as the structural foundation of PCBA, has a manufacturing process that covers several key processes, such as board cutting, inner layer treatment, placage de cuivre, forage, exposition, developing, gravure, etc.. To ensure circuit accuracy and inter-layer connection, all key materials should be fully inspected to ensure that they meet the safety and stability requirements of the medical industry. In order to ensure line accuracy and inter-layer connection reliability, we need to rely on advanced manufacturing equipment and standardized process management. A ce stade, any small process deviation may cause defects in the subsequent SMT mounting or soldering process, affecting the electrical performance of the entire board.

2. Strict control of the manufacturing environment
High-quality Fabrication de PCB is inseparable from a clean, well-protected electrostatic production environment. Dust particles or electrostatic discharge can lead to board performance degradation or even failure. Donc, the need to carry out key processes in a clean room, and set up electrostatic protection measures to protect the stability and consistency of the PCB from the source.

Medical pcb smt assembly

1 SMT precision and speed
In the processing of medical PCBA boards, SMT placement plays a crucial role. High-precision mounter can realize the precise installation of components, and its error can even be controlled within 01mm, thus ensuring the accuracy of the component position, and significantly improve the production efficiency. En outre, the high-speed operation of the mounter also fully reflects the modern electronics manufacturing industry on the pursuit of efficient production.

2 Solder paste selection and printing quality

Solder paste as a key material for fixing components, its selection has a direct impact on product quality. According to the characteristics of different models and sizes of components, the need to choose the appropriate type of solder paste. En même temps, in the solder paste printing process, we must ensure that the solder paste can be uniformly and accurately printed to the PCB pads, laying a solid foundation for the subsequent welding process.

3 reflow soldering and temperature control

Reflow soldering is the core process of SMT chip processing. By precisely controlling the temperature profile of the exhaust gas furnace, you can ensure that the solder paste can fully melt and form a solid connection. The proper temperature profile is not only related to the quality of soldering, but also can effectively reduce the generation of soldering defects and defective products.

4 AOI Inspection and Quality Control

AOI (Inspection optique automatique) technology is widely used to detect the quality of welding. It visually inspects the completed soldered PCB boards through optical inspection means, and is able to detect and report soldering defects or errors in a timely manner, thus providing strong support for ensuring the high quality and reliability of medical PCBA boards.

Complementary aspects of DIP insert processing

For those components that cannot be mounted by SMT technology, comme les gros connecteurs, condensateurs électrolytiques, etc., they need to be processed by DIP (Dual Inline Package) plug-in processing. This step usually includes insertion, soudure d'onde and manual refill soldering. Although DIP insert processing is relatively less used in modern electronics manufacturing, it still occupies a place in the processing of medical PCBA boards. Ensuring the accuracy of the insertion and the reliability of the soldering is crucial to improving the overall product quality.

Functional Verification and System Debugging

After the PCBA has been processed and assembled, it enters the stage of functional verification and debugging. The core task of this link is to confirm that the circuit board functions run normally, and all components meet the design expectations. Through this process, we can effectively troubleshoot potential faults and improve the stability and safety of the whole machine.

1. Functional and aging double test
After completing the soldering process, the PCBA needs to be subjected to a series of system tests, including ICT (in-circuit test), FCT (Functional Completion Test) and aging operation test. These tests help to identify potential device anomalies, circuit short circuits or software defects, and are a key part of ensuring product reliability.

2. Debugging Process and Firmware Burning
According to the specific application requirements, the PCBA will be finely tuned to ensure that each module operates in concert. The debugging stage will check the performance of the chip, interface, power module and other key parts one by one. En outre, through the program burning tool, the software code will be implanted into the microcontroller or embedded chip, so that the equipment has the ability of independent control and logic judgment.

Finished product processing and packaging process

1. Board Cleaning and Protective Coating
In order to enhance the adaptability of PCBAs in changing environments, finished products need to be thoroughly cleaned after processing to remove residual flux, dust and impurities. Ensuite, the three protective coatings are applied to form a protective film against moisture, corrosion and pollution to enhance the durability of the circuit board in practical applications.

2. Finished product packaging and shipping security
After the final quality inspection to confirm that there is no error, PCBA products will enter the packaging process. The packaging process is strictly enforced anti-vibration, anti-static and sealing standards to ensure that the transportation process is not damaged. Before packaging, we also carry out appearance verification, function retesting and safety audit to ensure the integrity and consistency of the products at the time of shipment.

Avantages, Disadvantages and Applications of Aluminum PCB

PCB en aluminium, or aluminum substrate, is a type of printed circuit board that uses metallic aluminum as a substrate. Its structure usually includes a circuit layer (feuille de cuivre), an insulating layer and a metal base layer, with some high-end products adopting a double-sided or multilayer design. The core advantage of aluminum substrate is its excellent thermal conductivity, which can effectively reduce the operating temperature of electrical appliances and improve working efficiency and product life. En outre, it has good insulation, mechanical strength and stability, and small dimensional changes, which can replace fragile ceramic substrates and reduce the need for heat sinks, réduisant ainsi les coûts.

Advantages of Aluminum-based PCBs

Aluminum-based PCBs offer a variety of features and advantages that allow them to be used in a wide range of different electronic devices:

Lightweight Design

One of the primary considerations for electronic device manufacturers when choosing a PCB is its lightweight. Aluminum-based PCBs are lighter in weight, which not only helps to reduce the overall weight of the electronic device, but also makes the device more compact, in line with the modern trend of miniaturization of equipment. Because of this, aluminum-based PCBs have become the preferred choice for lightweighting solutions for many electronic products.

Dissipation de chaleur supérieure

Thermal performance is an important factor that every PCB must consider. Electronic components inevitably generate heat when working, and some components have higher heat and greater heat dissipation needs. The heat dissipation effect of aluminum-based PCBs is significantly better than that of metal-core PCBs made of other materials, which helps to maintain the stable operation of equipment. Donc, choosing aluminum-based PCBs can bring better heat dissipation experience.

Durable

Stability and durability are equally important when evaluating PCB materials. If the PCB itself is not durable, the lifespan of the entire device will be affected. Aluminum has excellent durability and the ability to maintain good performance over time, making it ideal for devices that run for long periods of time. Because of this, aluminum-based PCBs are widely considered to be a reliable manufacturing choice.

PCB en aluminium

PCB en aluminium

Environmental Advantages

With the growing awareness of environmental protection, choosing environmentally friendly materials has become an important responsibility of the manufacturing industry. Aluminium, as a green material, is non-toxic and environmentally friendly, and its manufacturing and assembly processes are also more environmentally friendly. Adopting aluminum-based PCBs not only helps reduce the impact on the environment, but is also a smart move in line with the concept of sustainable development.

Rentable

From an economic point of view, aluminum-based PCBs are more cost-effective to manufacture. Aluminum materials are abundant and reasonably priced in the marketplace, making them relatively inexpensive to manufacture. Aluminum-based PCBs are the ideal economic solution for manufacturers with limited budgets who want to get the most out of the best cost.

Disadvantages of Aluminum-based PCBs

Despite the many advantages of aluminum-based PCBs, there are some shortcomings in their use that require attention during selection. The main limitations are shown below:

Limited double-layer design

Compared with traditional PCBs, aluminum-based PCBs are usually unable to achieve a double-layer structure. Most of the current aluminum-based PCB is mainly used for single-sided wiring, the manufacture of double-sided or multi-layer structure will face the problem of process difficulty and high cost. This is a limitation that needs to be overcome in the manufacturing process of aluminum-based PCBs.

Small-scale defects

Although aluminum-based PCBs perform well in terms of performance and functionality, some small-scale electrical strength or mechanical stress issues may still occur in practice. These potential defects mean that Aluminum-based PCBs still need to be further optimized and improved under specific application conditions.

Structural Composition of Aluminum-Based PCBs

Aluminum-based PCBs are typically composed of three distinct layers, and the functions and properties of each layer are described below:

Aluminum PCB structure

Aluminum PCB structure

Conductive Copper Layer
This layer is first etched to form the circuit pattern. The thickness of the copper layer is usually similar to that of a conventional FR-4 sheet and is made from electrolytic copper foil. This layer of copper provides excellent conductivity to the circuit and can effectively carry higher currents to ensure overall stable performance.

Insulating Layer
Immediately below the copper layer is the dielectric layer, which is the key to heat dissipation and electrical isolation. The thermal performance of aluminum-based PCBs is largely dependent on the thermal conductivity of the layer. The more evenly distributed the insulating layer is, the more ideal the heat dissipation effect will be, which can help keep electronic components running at low temperatures. Its precision is critical to the overall durability of the PCB.

Metal Substrate Layer
The bottom layer is the metal substrate, with aluminum being the most common material choice. The material of the substrate depends on the application requirements. Aluminum is a commonly used metal due to its good price/performance ratio and excellent heat dissipation performance. Aluminum substrates are available in a variety of models, tel que 5052, 6061, 1060, etc., to meet diverse application requirements.

Applications of Aluminum Printed Circuit Boards

Most of the Assemblage PCB manufacturers prefer to opt for aluminum PCB assembly as it is suitable for various applications. Some of the applications of aluminum PCB are as follows.

1. LED Lighting Industry
Scénario d'application: LED lamps (par exemple. street lights, indoor lighting, automobile headlights) generate a lot of heat due to high power density and need to dissipate heat quickly to ensure luminous efficacy and longevity.
Avantage:
Thermal conductivity: aluminum substrate thermal conductivity up to 1.0~2.0 W/(m-K), far more than the traditional FR-4 material (0.3 Avec(m-K)), effectively reduce the LED junction temperature.

2. Power electronic equipment
Scénario d'application: Switching power supply, onduleur, DC/DC converter and other equipment that need to withstand high current and high temperature.
Avantage:
Heat dissipation and volume optimization: Aluminum substrates can replace heat sinks and reduce product volume by more than 30%.

3. Électronique automobile
Scénario d'application: Engine Control Unit (ECU), Motor Drive Module, Battery Management System (GTC), etc..
Avantage:
High temperature and vibration resistance: Aluminum substrate can work stably in -40℃ to 150℃ environment, résistance à la flexion >200MPa.

4. Industrial control and automation
Scénarios d'application: programmable logic controllers (API), industrial robots, capteurs, etc..
Avantage:
Haute fiabilité: Aluminum substrate is corrosion resistant (passed salt spray test >3000 heures), adapting to harsh industrial environments.

5. Matériel de communication
Scénarios d'application: 5G base stations, routeurs, optical modules, etc.. requiring high stability circuit boards.
Avantage:
Low thermal resistance and low loss: aluminum substrate thermal resistance <0.2℃/W, perte diélectrique <0.02, to protect signal integrity.

6. Matériel médical
Scénario d'application: Surgical shadowless lamps, imaging equipment (such as CT, IRM), high-precision instruments and so on.
Avantage:
Environmental protection and safety: RoHS compliant, lead-free design to guarantee medical safety.

leadSintec: Trusted Aluminum PCB Manufacturer

While choosing the right PCB material is crucial, what is also not to be overlooked is finding a trustworthy Fabricant de PCB. In China, we are considered a leading PCB assembly manufacturer in the electronic printed circuit board industry, able to provide aluminum-based PCBs with excellent performance.

What’s more, you have every option to work with us to ensure that your PCB application solutions are always up to scratch. We always focus on the needs of our customers and tailor-make the most suitable aluminum-based PCB solutions after in-depth communication and detailed analysis.

We focus on high quality standards, the reliability of the soldering inside the PCB and cost-effectiveness. This enables us to provide our customers with long-lasting PCB products that maintain excellent heat dissipation even in high-temperature environments and continue to safeguard the operation of their equipment.