Entrées par

Medical equipment pcb assembly

In this era of rapid development of science and technology, medical equipment is increasingly important for the protection of human health. Le PCBA (Assemblage de la carte de circuit imprimé) inside the device, as its core component, the quality of its processing and assembly has a direct impact on the performance and stability of the device. Donc, as a purchasing staff of electronic equipment manufacturers, in-depth understanding of the various aspects of medical PCBA processing and assembly is particularly critical. Suivant, we will go into this field together, detailed analysis of medical PCBA processing and assembly process of several core links.

Five core advantages of medical electronics PCB assembly

1. Functional core platform
As the “central nerve” of medical electronics, PCB is responsible for signal acquisition, processing and transmission.
Typical applications include:

Complex signal processing in high-end medical imaging equipment (par exemple. CT, MRI).

High-speed data processing in vital signs monitoring systems such as electrocardiogram (ECG) and electroencephalogram (EEG).

Electronic control units for sophisticated therapeutic equipment such as ventilators and defibrillators

2. Technology Driver for Miniaturization
Reduces the size of medical electronic devices by up to 20% while improving functional integration through High Density Interconnect (HDI) technologie.
Key Application Example:

Non-invasive blood glucose meters Integrated multi-layer flexible circuit boards (jusqu'à 10 couches)

Compact probe driver circuits for portable ultrasound systems

Ultra-thin, biocompatible PCB structures for implantable devices.

3. Core Carrier of Intelligent Healthcare
Supports multi-sensor system integration and edge intelligent computing, and is a key component in the upgrade of intelligent healthcare.
Typical smart scenarios:

Intelligent infusion management system, combining temperature, flow rate and pressure sensing.

Remote diagnosis and treatment equipment, realizing dual-mode connection between 5G and Wi-Fi.

AI-assisted diagnostic equipment embedded with edge computing chips to improve analysis efficiency.

4. Highly Reliable Technology Guarantee
fully complies with international medical electronics standards to ensure safe and stable product operation.
Certification and testing include:

IPC-A-610 Level 3 assembly standard

ISO 10993 biocompatibility certification

Continuous aging test up to 96 hours or more
Critical process control:

Medical grade lead-free soldering technology

Conformal coating treatment for moisture, mold and salt spray resistance

Comprehensive AOI automatic optical inspection + flying probe electrical test

5. Innovation and R&D Accelerator
Rapid prototyping capability to significantly shorten the product development cycle.
Features include:

From design drawings to physical prototypes in as little as 2 semaines

Supports process validation for over 10 specialty functional materials
Emerging Application Scenarios:

Flexible and extensible circuits for wearable health devices.

Grande vitesse, high-precision control boards for surgical robots

Small implantable circuit systems for neuromodulators

Medical PCB

Precision planning in pcb design stage

1. Functional positioning and structural layout optimization
Medical devices pose a higher challenge to the precision of PCBA design due to their complex functions. Design engineers need to rationally configure the size ratio, layer structure and device layout of the PCB board according to the core functions of the device. During the design process, the electrical characteristics, heat dissipation efficiency, electromagnetic compatibility (EMC) and manufacturing process suitability must be considered simultaneously. With the help of professional EDA software, we ensure that the production process is optimized while the performance meets the standard.

2. Material Selection and Quality Assurance
The overall performance of PCBAs is highly dependent on the reliability of the materials used. The substrates, components and soldering materials commonly used in medical PCBs must meet the standards of medical grade and have the characteristics of high temperature resistance, corrosion resistance and non-toxicity. In the material preparation stage, all key materials should be comprehensive quality inspection, strict control to ensure that it meets the requirements of the medical industry for safety and stability.

High-precision execution of PCB manufacturing

1. Fine control of process flow
PCB, as the structural foundation of PCBA, has a manufacturing process that covers several key processes, such as board cutting, inner layer treatment, placage de cuivre, forage, exposure, developing, gravure, etc.. To ensure circuit accuracy and inter-layer connection, all key materials should be fully inspected to ensure that they meet the safety and stability requirements of the medical industry. In order to ensure line accuracy and inter-layer connection reliability, we need to rely on advanced manufacturing equipment and standardized process management. At this stage, any small process deviation may cause defects in the subsequent SMT mounting or soldering process, affecting the electrical performance of the entire board.

2. Strict control of the manufacturing environment
High-quality Fabrication de PCB is inseparable from a clean, well-protected electrostatic production environment. Dust particles or electrostatic discharge can lead to board performance degradation or even failure. Donc, the need to carry out key processes in a clean room, and set up electrostatic protection measures to protect the stability and consistency of the PCB from the source.

Medical pcb smt assembly

1 SMT precision and speed
In the processing of medical PCBA boards, SMT placement plays a crucial role. High-precision mounter can realize the precise installation of components, and its error can even be controlled within 01mm, thus ensuring the accuracy of the component position, and significantly improve the production efficiency. En outre, the high-speed operation of the mounter also fully reflects the modern electronics manufacturing industry on the pursuit of efficient production.

2 Solder paste selection and printing quality

Solder paste as a key material for fixing components, its selection has a direct impact on product quality. According to the characteristics of different models and sizes of components, the need to choose the appropriate type of solder paste. En même temps, in the solder paste printing process, we must ensure that the solder paste can be uniformly and accurately printed to the PCB pads, laying a solid foundation for the subsequent welding process.

3 reflow soldering and temperature control

Reflow soldering is the core process of SMT chip processing. By precisely controlling the temperature profile of the exhaust gas furnace, you can ensure that the solder paste can fully melt and form a solid connection. The proper temperature profile is not only related to the quality of soldering, but also can effectively reduce the generation of soldering defects and defective products.

4 AOI Inspection and Quality Control

AOI (Inspection optique automatique) technology is widely used to detect the quality of welding. It visually inspects the completed soldered PCB boards through optical inspection means, and is able to detect and report soldering defects or errors in a timely manner, thus providing strong support for ensuring the high quality and reliability of medical PCBA boards.

Complementary aspects of DIP insert processing

For those components that cannot be mounted by SMT technology, such as large connectors, condensateurs électrolytiques, etc., they need to be processed by DIP (Dual Inline Package) plug-in processing. This step usually includes insertion, soudure d'onde and manual refill soldering. Although DIP insert processing is relatively less used in modern electronics manufacturing, it still occupies a place in the processing of medical PCBA boards. Ensuring the accuracy of the insertion and the reliability of the soldering is crucial to improving the overall product quality.

Functional Verification and System Debugging

After the PCBA has been processed and assembled, it enters the stage of functional verification and debugging. The core task of this link is to confirm that the circuit board functions run normally, and all components meet the design expectations. Through this process, we can effectively troubleshoot potential faults and improve the stability and safety of the whole machine.

1. Functional and aging double test
After completing the soldering process, the PCBA needs to be subjected to a series of system tests, including ICT (in-circuit test), FCT (Functional Completion Test) and aging operation test. These tests help to identify potential device anomalies, circuit short circuits or software defects, and are a key part of ensuring product reliability.

2. Debugging Process and Firmware Burning
According to the specific application requirements, the PCBA will be finely tuned to ensure that each module operates in concert. The debugging stage will check the performance of the chip, interface, power module and other key parts one by one. En outre, through the program burning tool, the software code will be implanted into the microcontroller or embedded chip, so that the equipment has the ability of independent control and logic judgment.

Finished product processing and packaging process

1. Board Cleaning and Protective Coating
In order to enhance the adaptability of PCBAs in changing environments, finished products need to be thoroughly cleaned after processing to remove residual flux, dust and impurities. Ensuite, the three protective coatings are applied to form a protective film against moisture, corrosion and pollution to enhance the durability of the circuit board in practical applications.

2. Finished product packaging and shipping security
After the final quality inspection to confirm that there is no error, PCBA products will enter the packaging process. The packaging process is strictly enforced anti-vibration, anti-static and sealing standards to ensure that the transportation process is not damaged. Before packaging, we also carry out appearance verification, function retesting and safety audit to ensure the integrity and consistency of the products at the time of shipment.

Avantages, Disadvantages and Applications of Aluminum PCB

Aluminum PCB, or aluminum substrate, is a type of printed circuit board that uses metallic aluminum as a substrate. Its structure usually includes a circuit layer (feuille de cuivre), an insulating layer and a metal base layer, with some high-end products adopting a double-sided or multilayer design. The core advantage of aluminum substrate is its excellent thermal conductivity, which can effectively reduce the operating temperature of electrical appliances and improve working efficiency and product life. En outre, it has good insulation, mechanical strength and stability, and small dimensional changes, which can replace fragile ceramic substrates and reduce the need for heat sinks, thus lowering costs.

Advantages of Aluminum-based PCBs

Aluminum-based PCBs offer a variety of features and advantages that allow them to be used in a wide range of different electronic devices:

Lightweight Design

One of the primary considerations for electronic device manufacturers when choosing a PCB is its lightweight. Aluminum-based PCBs are lighter in weight, which not only helps to reduce the overall weight of the electronic device, but also makes the device more compact, in line with the modern trend of miniaturization of equipment. Because of this, aluminum-based PCBs have become the preferred choice for lightweighting solutions for many electronic products.

Dissipation de chaleur supérieure

Thermal performance is an important factor that every PCB must consider. Electronic components inevitably generate heat when working, and some components have higher heat and greater heat dissipation needs. The heat dissipation effect of aluminum-based PCBs is significantly better than that of metal-core PCBs made of other materials, which helps to maintain the stable operation of equipment. Donc, choosing aluminum-based PCBs can bring better heat dissipation experience.

Durable

Stability and durability are equally important when evaluating PCB materials. If the PCB itself is not durable, the lifespan of the entire device will be affected. Aluminum has excellent durability and the ability to maintain good performance over time, making it ideal for devices that run for long periods of time. Because of this, aluminum-based PCBs are widely considered to be a reliable manufacturing choice.

Aluminum PCB

Aluminum PCB

Environmental Advantages

With the growing awareness of environmental protection, choosing environmentally friendly materials has become an important responsibility of the manufacturing industry. Aluminium, as a green material, is non-toxic and environmentally friendly, and its manufacturing and assembly processes are also more environmentally friendly. Adopting aluminum-based PCBs not only helps reduce the impact on the environment, but is also a smart move in line with the concept of sustainable development.

Cost-effective

From an economic point of view, aluminum-based PCBs are more cost-effective to manufacture. Aluminum materials are abundant and reasonably priced in the marketplace, making them relatively inexpensive to manufacture. Aluminum-based PCBs are the ideal economic solution for manufacturers with limited budgets who want to get the most out of the best cost.

Disadvantages of Aluminum-based PCBs

Despite the many advantages of aluminum-based PCBs, there are some shortcomings in their use that require attention during selection. The main limitations are shown below:

Limited double-layer design

Compared with traditional PCBs, aluminum-based PCBs are usually unable to achieve a double-layer structure. Most of the current aluminum-based PCB is mainly used for single-sided wiring, the manufacture of double-sided or multi-layer structure will face the problem of process difficulty and high cost. This is a limitation that needs to be overcome in the manufacturing process of aluminum-based PCBs.

Small-scale defects

Although aluminum-based PCBs perform well in terms of performance and functionality, some small-scale electrical strength or mechanical stress issues may still occur in practice. These potential defects mean that Aluminum-based PCBs still need to be further optimized and improved under specific application conditions.

Structural Composition of Aluminum-Based PCBs

Aluminum-based PCBs are typically composed of three distinct layers, and the functions and properties of each layer are described below:

Aluminum PCB structure

Aluminum PCB structure

Conductive Copper Layer
This layer is first etched to form the circuit pattern. The thickness of the copper layer is usually similar to that of a conventional FR-4 sheet and is made from electrolytic copper foil. This layer of copper provides excellent conductivity to the circuit and can effectively carry higher currents to ensure overall stable performance.

Insulating Layer
Immediately below the copper layer is the dielectric layer, which is the key to heat dissipation and electrical isolation. The thermal performance of aluminum-based PCBs is largely dependent on the thermal conductivity of the layer. The more evenly distributed the insulating layer is, the more ideal the heat dissipation effect will be, which can help keep electronic components running at low temperatures. Its precision is critical to the overall durability of the PCB.

Metal Substrate Layer
The bottom layer is the metal substrate, with aluminum being the most common material choice. The material of the substrate depends on the application requirements. Aluminum is a commonly used metal due to its good price/performance ratio and excellent heat dissipation performance. Aluminum substrates are available in a variety of models, such as 5052, 6061, 1060, etc., to meet diverse application requirements.

Applications of Aluminum Printed Circuit Boards

Most of the Assemblage PCB manufacturers prefer to opt for aluminum PCB assembly as it is suitable for various applications. Some of the applications of aluminum PCB are as follows.

1. LED Lighting Industry
Application Scenario: LED lamps (par exemple. street lights, indoor lighting, automobile headlights) generate a lot of heat due to high power density and need to dissipate heat quickly to ensure luminous efficacy and longevity.
Advantage:
Thermal conductivity: aluminum substrate thermal conductivity up to 1.0~2.0 W/(m-K), far more than the traditional FR-4 material (0.3 W/(m-K)), effectively reduce the LED junction temperature.

2. Power electronic equipment
Application Scenario: Switching power supply, inverter, DC/DC converter and other equipment that need to withstand high current and high temperature.
Advantage:
Heat dissipation and volume optimization: Aluminum substrates can replace heat sinks and reduce product volume by more than 30%.

3. Électronique automobile
Application Scenario: Engine Control Unit (ECU), Motor Drive Module, Battery Management System (BMS), etc..
Advantage:
High temperature and vibration resistance: Aluminum substrate can work stably in -40℃ to 150℃ environment, bending strength >200MPa.

4. Industrial control and automation
Application scenarios: programmable logic controllers (PLC), industrial robots, capteurs, etc..
Advantage:
Haute fiabilité: Aluminum substrate is corrosion resistant (passed salt spray test >3000 heures), adapting to harsh industrial environments.

5. Communication equipment
Application scenarios: 5G base stations, routeurs, optical modules, etc.. requiring high stability circuit boards.
Advantage:
Low thermal resistance and low loss: aluminum substrate thermal resistance <0.2℃/W, dielectric loss <0.02, to protect signal integrity.

6. Medical equipment
Application Scenario: Surgical shadowless lamps, imaging equipment (such as CT, MRI), high-precision instruments and so on.
Advantage:
Environmental protection and safety: RoHS compliant, lead-free design to guarantee medical safety.

leadSintec: Trusted Aluminum PCB Manufacturer

While choosing the right PCB material is crucial, what is also not to be overlooked is finding a trustworthy Fabricant de PCB. In China, we are considered a leading PCB assembly manufacturer in the electronic printed circuit board industry, able to provide aluminum-based PCBs with excellent performance.

What’s more, you have every option to work with us to ensure that your PCB application solutions are always up to scratch. We always focus on the needs of our customers and tailor-make the most suitable aluminum-based PCB solutions after in-depth communication and detailed analysis.

We focus on high quality standards, the reliability of the soldering inside the PCB and cost-effectiveness. This enables us to provide our customers with long-lasting PCB products that maintain excellent heat dissipation even in high-temperature environments and continue to safeguard the operation of their equipment.

Quels sont les processus de l'ensemble PCB des véhicules électriques?

In the automotive intelligence, electrification process accelerated today, automotive electronic circuit boards PCBA as the core carrier of the automotive electronic system, the processing process is precise and complex, any one of the links are related to the performance, reliability and safety of automotive electronic equipment. This article we will give you a detailed introduction to the electric car pcba assembly process, all-round control of the quality of electric car pcba.

The role of pcb in electric vehicles

PCB is the backbone of electronic equipment, providing a physical platform for installing and interconnecting various electronic components. In electric vehicles, pcb has a wide range of uses, y compris.

Battery Management System (BMS):The BMS monitors and manages the state of the battery to ensure optimal performance and safety. The system contains complex circuitry that requires high quality PCBs to efficiently handle power and data signals.
Power electronics: These include inverters, converters and chargers that manage the current between the battery and the motor. High-performance PCBs are essential to handle high currents and voltages.
Infotainment Systems:Modern electric vehicles are equipped with advanced infotainment systems that provide navigation, entertainment and connectivity. These systems rely on PCBs to seamlessly integrate various functions.
Systèmes avancés d'assistance à la conduite (ADAS): Technologies such as adaptive cruise control, lane keeping assist and collision avoidance require reliable PCBs to process data from sensors and cameras in real time.

Electric Vehicle PCBA Assembly Process

Préparation des matières premières

Circuit board substrate procurement: first of all, according to the specific needs of automotive electronics, select the appropriate circuit board substrate materials. In view of the harsh environment inside the car, large temperature changes, strong vibration and electromagnetic interference, usually with high heat resistance, high mechanical strength, good electromagnetic compatibility of the substrate, such as special modified FR-4 board or high-performance flexible board. These substrates should meet strict industry standards to ensure stable operation under complex working conditions.

Selection and procurement of electronic components: According to the design of the automotive electronic circuit, we accurately screen all kinds of electronic components, y compris les résistances, condensateurs, inducteurs, chips, etc.. The quality of the components directly determines the quality of the PC. The quality of the components directly determines the quality of the PCBA, so we must use products that meet the automotive-grade standards, with high reliability, wide temperature range adaptability and other characteristics. Purchased components need to undergo strict factory inspection to check the integrity of the appearance, the accuracy of the electrical parameters, to prevent defective products from entering the production line.

SMT Processing

Impression de pâte de soudure: Solder paste is printed onto the circuit board pads through high-precision stencils to ensure sufficient quantity and accuracy to avoid soldering defects. The stencil is laser cut or etched, and different pads correspond to different mesh holes in order to meet the packaging requirements of the components.

SMD: The components are quickly and accurately mounted onto the pads using high-precision mounting machines to ensure that tiny components such as 0201, BGA chips, etc.. are accurately aligned and pasted with solder paste.

Soudeur de reflux: After the placement is completed, the temperature profile is precisely controlled through a multi-temperature zone reflow oven to ensure that the solder paste melts and solidifies uniformly, forming a high-quality solder joint, avoiding damage to components, and ensuring the reliability of the soldering.

THT Insert Processing (if required)

Some of the automotive electronics PCBA also involves through-hole technology (Tht) processing link. For some larger power, high mechanical strength requirements or not applicable to SMT components, such as large electrolytic capacitors, relays, etc., need to use THT technology.

Insertion: Workers will insert the pins of the components into the pre-drilled holes in the circuit board, requiring the insertion of the right depth, straight pins, to ensure a good connection with the circuit board and the inner layer of the line. This process requires manual operation combined with auxiliary tooling to ensure the accuracy and consistency of the plug-in.

Soudure d'onde: After the plug-in is completed, the wave soldering equipment is utilized for soldering. Liquid solder to form a wave-like shape, the circuit board from the wave through the peak, so that the component pins and circuit board pads are fully infiltrated welding. The key to wave soldering is to control the solder temperature, wave height and soldering speed to ensure that the solder joints are full, no false soldering, while avoiding short circuits and other problems caused by too much solder.

Inspection and debugging

Appearance Inspection: Comprehensively inspect the PCBA appearance, check the missing components, offset, damage and defective solder joints and other issues, with the help of magnifying glass and other tools to ensure the quality of the appearance, to avoid potential safety hazards.

Electrical performance test: use professional equipment to test the PCBA electrical parameters, to confirm that the circuit connectivity, power module output and signal integrity in line with the design requirements.

Functional test: simulate the actual automotive environment, verify the actual working performance of PCBA through the test tooling to ensure its stable and reliable performance under various working conditions.

Three-proof processing

Considering the complexity of the automobile driving environment, automobile electronic PCBAs usually need three-proof (moisture-proof, mildew-proof, salt spray-proof) treatment. Special three-proof paint is used to form a protective film on the surface of PCBA by spraying, dipping or brushing to isolate the external moisture, moule, salt spray and other unfavorable factors and prolong the service life of PCBA.

EV PCB assembly

PCB Manufacturing and Assembly Considerations for Electric Vehicles

Gestion thermique: The power electronics in electric vehicles generate a lot of heat. To prevent overheating, manufacturers need to use high thermal conductivity materials (par exemple. cuivre, aluminum substrates) and advanced cooling technologies (heat sinks, hot channels, liquid cooling, etc.), and manage the coefficients of thermal expansion between different materials to avoid damages triggered by temperature changes.

Haute fiabilité: EVs are often exposed to harsh environments such as vibration, temperature differences, moisture and dust, and PCBs must be highly reliable and durable. Manufacturers need to follow IPC standards (par exemple. IPC-A-600, IPC-A-610) and take protective measures such as conformal coating and encapsulation, and perform rigorous testing (temperature cycling, vibration, humidité, etc.) to ensure quality.

Miniaturization: PCBs are becoming increasingly miniaturized to fit compact vehicle designs, using HDI technology for microfabrication and multilayer stacking. Precision assembly and 3D Conception de PCB software ensure compact layouts and stable signal and power distribution.

High power density: The high power requirements of electric vehicles require PCBs that support high currents, using thick copper layers and wide alignments to ensure stability and minimize losses in the power layer. Effective grounding, shielding, insulation and safe distance design are also critical to ensure safety and EMI suppression.

Cost and Scalability: While pursuing high performance, manufacturers need to control costs and increase production flexibility. Automated production (Par exemple, AOI, Smt) can reduce labor costs and improve consistency. Cependant, there is still a need to balance innovation, cost and scale in the context of rapidly evolving technology.

Compliance with industry standards: Manufacturers must follow industry standards such as ISO 16750, IPC, and others to ensure that PCBs meet requirements for safety and performance. Compliance requires complete documentation, validation and process adjustments to adapt to changing regulations.

The Future of PCB Assembly for Electric Vehicles

The future of EV Assemblage PCB is bright, and the following trends are driving change in the industry:

Convergence of AI and IoT: As Artificial Intelligence (IA) Et l'Internet des objets (IoT) are increasingly used in EVs, the demand for high-performance PCBs increases. These advanced technologies require powerful processing and connectivity capabilities, driving the continued evolution of PCB design and assembly towards greater integration and intelligence.

Sustainable Manufacturing: Sustainability is increasingly in the spotlight, and environmentally friendly Fabrication de PCB processes are gaining more attention. Lead-free soldering, recyclable substrates, and energy-efficient production processes are all important initiatives to promote green manufacturing.

Growing demand for customization: The increasing diversity of electric vehicle models and features is increasing the demand for customized PCBs. Manufacturers need to provide flexible and customized solutions to meet the specialized requirements of different platforms and application scenarios.

Collaboration and standardization: Collaboration between OEMs, electronics manufacturers and industry standards organizations is driving standardization in PCB design and production. Standardization helps streamline production processes and ensures interconnectivity and compatibility between systems.

leadsintec’s excellent pcba partner for automotive electronics

LST specializes in automotive electronic circuit board PCBA processing field, with advanced production equipment, from high-precision solder paste printing machine, top-class mounter to precision reflow oven, professional testing instruments, to ensure that each processing step can meet the automotive quality standards. The company’s technical team is experienced and familiar with the automotive electronics industry specifications, providing one-stop PCBA processing services. En même temps, strict quality control system throughout the production process, through multiple rounds of testing and debugging, to ensure the delivery of each piece of automotive electronics PCBA has a high degree of reliability, for the booming development of the automotive industry escort.

Qu'est-ce que le partenaire EMS

Industrie 4.0 est profondément remodelé la façon dont les produits sont conçus, fabriqué et livré. Services de fabrication électronique (EMS) joue un rôle de plus en plus stratégique dans cette vague, Fournir des services de fabrication et d'assemblage intégrés pour une large gamme de composants et d'appareils électroniques, activer les fabricants d'équipements d'origine (OEMS) se concentrer sur leur base de conception, Innovation et marketing sans avoir à investir d'énormes sommes d'argent dans la construction de leurs propres lignes de production.

Partners EMS, représenté par LST, sont en mesure de fournir aux clients OEM des solutions de fabrication efficaces qui leur permettent de relever les défis de la fabrication d'électronique complexe tout en réduisant les dépenses en capital initiales et en réalisant une réponse de marché flexible et efficace.

Qu'est-ce que EMS?

EMS (Services de fabrication d'électronique) est un modèle d'entreprise dans lequel un tiers fournit des services de fabrication liés à l'électronique aux fabricants de marque ou aux fabricants d'équipements d'origine (OEMS), non seulement en fournissant un assemblage de cartes de circuit imprimé (PCBA), mais aussi couvrant l'ensemble du processus de fabrication, à partir de l'approvisionnement des composants, essai, assemblage de machines, Logistique et distribution à la prise en charge après-vente. Les vendeurs d'EMS fournissent non seulement l'assemblage de la carte de circuit imprimé (PCBA), mais peut également couvrir l'ensemble du processus de fabrication à partir de l'achat de composants, essai, Assemblage de la machine complète, Logistique et distribution à la prise en charge après-vente.

Qu'est-ce qu'un partenaire EMS?

Un partenaire EMS est un fournisseur de services d'externalisation professionnelle qui a établi une relation approfondie avec les marques dans le domaine du service de fabrication électronique (EMS). Ces partenaires aident les marques à se concentrer sur Core R&D et ventes, Tout en réduisant les coûts et en améliorant l'efficacité en fournissant une chaîne complète de services à partir de la conception du produit, fabrication, Gestion de la chaîne d'approvisionnement à la logistique et à la distribution.

Services de base des partenaires EMS

1.Gestion de la fabrication et de la chaîne d'approvisionnement
Conception de PCB et la production: Fournir un service à guichet unique de la conception PCB au placement et à l'assemblage SMT.
Approvisionnement des composants: Réduire les coûts grâce à l'approvisionnement à grande échelle et gérer le réseau de fournisseurs.
Contrôle de qualité: Implémenter ISO 9001, IATF 16949 (électronique automobile) et d'autres normes de certification pour assurer le rendement des produits.

2.Logistique et distribution
Service de messagerie International Express (EMS): Par exemple, Couvoirs en Chine Post EMS 200+ pays et régions, Fournit des services tels que le prix assuré, Déclaration des douanes au nom des clients, et exempte la surcharge de carburant pour certaines itinéraires.
Entreposage intelligent: Utilisation de la technologie RFID pour réaliser un suivi complet des colis et optimiser l'efficacité du tri (par exemple. Pékin Post EMS raccourcit le temps de distribution par 30% Grâce à l'équipement automatisé).

3.Services à valeur ajoutée
Service après-vente: Collection de paiement d'assistance, 24-Mécanisme de rétroaction du service à la clientèle en ligne d'heure et des ventes après-vente.
Solutions personnalisées: Ajustez la ligne de production en fonction des clients’ besoins et soutenir les petits lot, Fabrication flexible à plusieurs valeurs.

Fabrication de partenaire EMS

Fabrication de partenaire EMS

Le mode de travail de l'EMS

Dans l'EMS (Services de fabrication électronique) modèle, Un partenariat stratégique est établi entre le fabricant d'équipements d'origine (Socle) et le fournisseur de services EMS. L'OEM est généralement responsable de la conception du produit et du développement des indicateurs de performance clés (KPI) pour le cycle de conception, tandis que le partenaire EMS est responsable de l'exécution de l'ensemble du processus de production. Ce processus, à partir de l'approvisionnement des composants et Fabrication de PCB à l'assemblage de produits finis et aux tests fonctionnels, est terminé par l'EMS. Le contenu du service peut être ajusté de manière flexible en fonction de différents projets, Couvrant du prototypage à petit volume à la production de masse à grande échelle.

Les principaux aspects des services EMS comprennent:

Fabrication de PCB: Produire des circuits imprimés (PCBS), qui sont les principaux éléments constitutifs des appareils électroniques, Pour fournir la base de connexion électrique pour les produits.

Approvisionnement des composants: Approvisionnement des composants électroniques de haute qualité auprès des fournisseurs réputés pour garantir les performances et la cohérence du produit.

Assemblage PCBA: Soudeur de précision des composants électroniques sur les cartes de circuits imprimées à l'aide de méthodes telles que SMT (Technologie de montage de surface) et tht (Grâce à la technologie des trous).

Prototypage et test: Construire des prototypes de produits et effectuer des tests complets pour vérifier l'intégrité fonctionnelle et la fiabilité à long terme.

Assemblage complet: Effectue la «construction de la boîte», C'est-à-dire, intégrer le PCBA avec le logement, boutons, câbles, et d'autres composants pour former le produit final.

Gestion de la chaîne d'approvisionnement: Gérer l'intégralité de la chaîne logistique de l'approvisionnement en matières premières à la livraison de produits finis pour assurer l'équilibre optimal du délai et du coût.

Conception pour la fabrication (DFM) Optimisation: Collaborez avec les OEM pendant la phase de conception du produit pour optimiser la structure pour améliorer l'efficacité de la production et réduire les coûts de fabrication.

Industries qui peuvent choisir la fabrication de partenaires EMS

La fabrication de partenaires EMS est universellement applicable et bénéfique pour les entreprises de toutes tailles et dans une variété d'industries. Des startups aux géants multinationaux, Toute entreprise peut utiliser EMS pour optimiser ses processus de fabrication.

Socle: Fabricants d'équipements d'origine (OEMS) qui conçoivent et vendent leurs propres fournisseurs EMS de produits de marque tels que PCI permettent aux OEM de se concentrer sur les compétences de base telles que le développement de produits et le marketing, tout en assurant une fabrication de haute qualité.
ODM: Les fabricants de conception d'origine des produits de conception et de fabrication qui sont ensuite étiquetés et vendus par d'autres sociétés..
Startups et petites entreprises:Ces entités n'ont souvent pas les ressources pour constituer des capacités de fabrication internes..
Institutions de recherche: Les organisations axées sur la recherche peuvent bénéficier de l'expertise EMS pour fabriquer des équipements spécialisés pour les progrès technologiques.

Résumé

Les partenaires EMS aident les marques à réaliser des opérations «à la lumière des actifs» grâce à une division spécialisée du travail, Tout en devenant un lien indispensable dans la chaîne de l'industrie électronique en tirant parti de la technologie, Coût et avantages du réseau mondial. Pour les entreprises qui ont besoin de se développer rapidement ou de se concentrer sur l'innovation, Le choix du partenaire EMS est une stratégie clé pour améliorer la compétitivité.

Choisissez LeadSintec comme partenaire de fabrication de PCB flexible

The manufacturing of flexible printed circuit boards (FPCS) is a multidisciplinary field that integrates material science, precision machining and electronic engineering. Its technological evolution has directly promoted innovation in industries such as consumer electronics, équipement médical, and automotive electronics. Leadsintec is a professional flexible Fabrication de PCB and assembly company. We have a professional design and processing team to meet all customer needs. Let’s take a look at our manufacturing capabilities.

Exceptional Flexible PCB Manufacturing Capability

Layer Configurations

LSTPCB offers a wide range of flexible circuit board configurations to meet the diverse demands of various industries for circuit complexity and mechanical flexibility:

  • Single-Layer Flexible PCBs: Our single-sided flexible circuits feature a conductive copper layer on a high-performance flexible dielectric substrate. They are optimized for simple designs, offering excellent bendability and cost efficiency. These lightweight structures ensure electrical reliability while enabling dynamic flexing.

  • Double-Layer Flexible PCBs: This configuration includes two conductive copper layers separated by a polyimide insulating layer, typically interconnected through plated through holes. It allows for increased circuit density without compromising flexibility.

  • Multi-Layer Flexible PCBs: We produce 4-layer flexible PCBs tailored for highly integrated systems such as wearable devices, flexible displays, medical sensing modules, and advanced automotive electronics.

  • Advanced Multi-Layer Designs: LSTPCB can manufacture 6-layer flexible circuits that balance precision signal routing with effective power distribution, ideal for high-performance systems with limited space. Our 8-layer flexible PCBs represent the leading edge of flex circuit technology, offering superior multifunctional integration and compact packaging.

  • PCB-flex rigide: As a UL-certified rigid-flex PCB manufacturer, LSTPCB offers hybrid structures with up to 32 rigid layers and 12 flexible layers. These boards combine the stability of rigid substrates with the bendability of flex layers, making them ideal for complex 3D interconnect designs in aerospace, defense, and premium consumer electronics.

Technical Advantages

Our expertise in flexible PCB manufacturing encompasses the following core capabilities:

  • Fine-Line Processing: We achieve line/space widths as narrow as 25μm on multi-layer flexible materials, with layer-to-layer alignment accuracy within ±50μm.

  • Premium Material Selection: We use high-grade materials such as polyimide and specialty thermoplastics to ensure stability and durability in a wide range of applications.

  • Bend Reliability Design: We account for critical minimum bend radius requirements to enhance product lifespan under dynamic bending conditions.

  • Custom Stack-Up Solutions: From basic single-layer to complex 8-layer configurations, we provide optimized stack-ups tailored to specific application needs.

  • Diverse Surface Finishes: We offer a variety of surface treatments including ENIG (Electroless Nickel Immersion Gold), immersion tin, and others to protect exposed copper and enhance solderability.

Nos capacités de fabrication

Article Description
Layer Flexible board: 1-12Couches
Flex-Rigid Board: 2-32Couches
Matériel

PI, ANIMAL DE COMPAGNIE, PEN, FR-4,dupont

Stiffeners

FR4, Aluminium, Polyimide, Stainless Steel

Final Thickness Flexible board: 0.002″ – 0.1″ (0.05-2.5MM)
Flexible-rigid board: 0.0024″ – 0.16″ (0.06-4.0MM)
Traitement de surface Lead-free: ENG Gold; OSP, Argent à immersion, Immersion Tin
Max / Min Board Size Min: 0.2″x0.3″ Max: 20.5″x13″
Min Trace
Width / Min Clearance
Inner: 0.5oz: 4/4mil Outer: 1/3oz-0.5oz: 4/4mil
1oz: 5/5mil 1oz: 5/5mil
2oz: 5/7mil 2oz: 5/7mil
Min Hole Ring Inner: 0.5oz: 4mil Outer: 1/3oz-0.5oz: 4mil
1oz: 5mil 1oz: 5mil
2oz: 7mil 2oz: 7mil
Épaisseur de cuivre 1/3oz – 2oz
Max / Min Insulation Thickness 2mil/0.5mil (50um/12.7um)
Min Hole Size and Tolerance Min hole: 8mil
Tolerance: PTH±3mil, NPTH±2mil
Min Slot 24mil x 35mil (0.6×0.9mm)
Solder Mask Alignment Tolerance ±3mil
Silkscreen Alignment Tolerance ±6mil
Silkscreen Line Width 5mil
Gold Plating Nickel: 100u” – 200u” Gold: 1u”-4u”
Immersion Nickel / Gold Nickel: 100u” – 200u” Gold: 1u”-5u”
Immersion Silver Silver: 6u” – 12u”
OSP Film: 8u” – 20u”
Test Voltage Testing Fixture: 50-300V
Profile Tolerance of Punch Accurate mould: ±2mil
Ordinary mould: ±4mil
Knife mould: ±8mil
Hand-Cut: ±15mil

Flexible PCB Manufacturing

Flexible PCB Manufacturing Process

At Leadsintec, the flexible Processus de fabrication de PCB consists of a series of sophisticated and tightly controlled steps, forming a precise production chain from raw materials to finished products:

1. Substrate Preparation

  • Sélection des matériaux: Polyimide (PI) is the primary substrate material due to its excellent heat resistance (up to 400°C), chemical stability, and mechanical flexibility—suitable for most application scenarios. Liquid Crystal Polymer (LCP), with its low dielectric loss (Dk = 2.85 at 1GHz), is preferred for high-frequency 5G applications.

  • Traitement de surface: Plasma cleaning or chemical etching is used to increase the surface energy of the substrate, improving copper foil adhesion.

2. Copper Lamination & Pattern Transfer

  • Dépôt de cuivre: A sputtering followed by electroplating process is used to create an ultra-thin seed copper layer (épaisseur <1μm), eliminating the thickness limitations of traditional lamination methods.

  • Photolithography: Dry film photoresist is applied, and high-precision pattern transfer is achieved using Laser Direct Imaging (LDI), enabling 50μm line width/spacing. After development, the resist protects desired copper areas.

3. Gravure & Laminage

  • Chemical Etching: Acidic cupric chloride solution removes unprotected copper. Etch rate control is critical, as polyimide and FR-4 materials have up to 15% difference in etching behavior, requiring compensation to avoid undercutting.

  • Multilayer Lamination: Automated hot presses are used to bond layers under controlled temperature (180–220°C) and pressure (30–50 kg/cm²) gradients, effectively managing CTE (Coefficient of Thermal Expansion) mismatches.

4. Forage & Metallization

  • Laser Drilling: Ultraviolet (UV) lasers (355nm wavelength) are used to create 50μm microvias without inducing mechanical stress, as seen with mechanical drilling.

  • Via Metallization: Electroless copper plating forms a 0.5–1μm conductive layer, ensuring reliable interlayer electrical connections.

5. Finition de surface & Protection

  • Accepter (Electroless Nickel/Immersion Gold): Provides excellent solderability and corrosion resistance. Thickness is precisely controlled: Ni 3–6μm / Au 0.05–0.1μm.

  • Coverlay Application: Heat-laminated polyimide coverlays (25μm with adhesive) are applied, with laser window opening precision reaching ±25μm.

6. Profilage & Essai

  • Laser Cutting: UV laser systems ensure clean, burr-free cutting of complex board outlines.

  • Reliability Testing: Includes dynamic bend testing (100,000 cycles from 0° to 180°), thermal shock cycles (-40°C to 125°C, 1000 cycles), and signal integrity testing (TDR impedance control within ±10%).

Flexible PCB Manufacturing Process

Cross-Industry Applications

Leadsintec’s flexible printed circuit boards (Flex PCBs) are driving innovation across a wide range of industries:

  • Dispositifs médicaux: Implantable electronics, wearable health monitors, diagnostic systems

  • Électronique automobile: Engine control units, dashboard displays, sensor networks

  • Électronique grand public: Smartphones, caméras numériques, technologie portable

  • Aérospatial & Aviation: Satellite systems, aircraft control panels, navigation instruments

  • Industrial Automation: Control systems, sensor modules, interface boards

  • Télécommunications: Networking equipment, mobile devices, transmission systems


Advantages of Leadsintec Flex PCBs

Choosing Leadsintec for your flexible circuit needs brings a host of clear benefits:

  • Space and Weight Savings
    By eliminating the need for traditional connectors and ribbon cables, our flexible and rigid-flex PCBs dramatically reduce overall system size and weight. This allows for more compact, efficient internal layouts—ideal for devices where slim and lightweight design is critical.

  • Fiabilité accrue
    Flexible circuits minimize physical interconnects between components, lowering the risk of failure points. This enhances the durability and reliability of the system, while also allowing for easier modifications to adapt to evolving design requirements.

  • Superior Design Freedom
    With advanced 3D routing capabilities, circuits can be precisely shaped to fit non-standard geometries. Shorter signal paths and better impedance control are achieved, making our solutions ideal for spatially constrained and complex structures.

  • Outstanding Thermal Management
    Compared to traditional rigid boards, our flexible PCBs offer improved heat dissipation, helping maintain thermal stability under continuous operation.

  • Exceptional Vibration Resistance
    The inherent flexibility of our materials reduces mechanical stress on solder joints, ensuring excellent durability and performance even in high-vibration or harsh operating environments.

  • Cost-Effective Performance
    While initial costs may vary for highly customized or low-volume designs, our mature production processes and scalable manufacturing capabilities ensure highly competitive overall value for our clients.

Quality Assurance and Certifications

At Leadsintec, we adhere to rigorous quality control protocols throughout the entire manufacturing process:

  • UL-Certified Production for Both Rigid and Flexible PCBs

  • ISO-Compliant Quality Management System

  • Comprehensive Environmental and Reliability Testing

  • Strict Electrical Performance Validation

  • Customer-Centric Engineering Approach

At Leadsintec, we understand that flexibility and strong client relationships are just as critical as advanced engineering. We offer premium, customized engineering and manufacturing services tailored to specific requirements—from rapid prototyping of single units to high-volume production runs.


Conclusion

With nearly two decades of expertise in flexible PCB manufacturing, Leadsintec delivers world-class flexible circuit solutions that combine innovative design, precision engineering, and exceptional reliability. Our comprehensive capabilities—from basic single-layer circuits to advanced multilayer and rigid-flex configurations—empower clients across industries to push the boundaries of electronic product development.

Partner with Leadsintec for your flexible PCB needs and experience the perfect balance of cutting-edge technology and customer satisfaction.

2Oz Copper PCB Introduction et Guide d'application

Printed circuit boards (PCBS) are a key component of electronic devices, both providing physical support for electronic components and enabling electrical connections. Among the many technical parameters of a PCB, the thickness or weight of the copper foil is particularly critical and is often expressed in ounces per square foot (oz/ft²). While 1oz copper foil is a common standard in traditional applications, 2oz copper PCBs are becoming increasingly popular as the performance needs of electronic devices increase.

Dans cet article, we’ll take an in-depth look at what the actual thickness of 2oz copper foil means in a PCB, explain why it’s growing in popularity in today’s electronic designs, plus we’ll sort through the key benefits that 2oz copper brings to the table, the applications for 2oz copper pcb’s, and introduce some design guidelines to help maximize its performance.

What is 2oz copper thick pcb

A 2oz copper thick PCB is a printed circuit board (PCB) with a copper foil thickness of 2 ounces (Oz). Below is a detailed description of 2 ounce copper thick PCBs:
In the PCB industry, copper foil thickness is measured using ounces (Oz) as a unit, avec 1 oz copper thickness indicating the thickness achieved by evenly distributing 1 oz (approximately 28.35 grams) weight of copper foil over a 1 square foot area.
A 1oz copper thickness equals approximately 35 microns (1.4 mils), so a 2oz copper thickness is approximately 70 microns (2.8 mils).

Basic Properties of 2oz Copper PCBs

High Conductivity: The increased thickness of the copper foil increases the ability of the line to carry a significant amount of current (formula: I ∝ h, h is the copper thickness) and reduces resistance losses.
Excellent heat dissipation: thick copper layer can quickly export heat, preventing components from overheating, extending the life of the equipment.
Haute résistance mécanique: strong resistance to bending, pulling and impact, adapting to complex industrial environments.
Classification difference: the production process is different between regular thick copper boards (≤3OZ) and ultra-thick copper boards (3-12Oz), with the latter requiring high-precision copper foil selection, special press-fit technology and enhanced etching process.

Why choose 2oz copper PCB?

Capacité de transport à courant élevé
Equation derivation: Line loadable current I is directly proportional to copper thickness h (I ∝ h), and heat generation Q is inversely proportional to copper thickness h (Q ∝ 1/h).
Practical application: In high power scenarios such as power modules and motor drives, 2oz copper PCBs can reduce resistance loss and improve system efficiency.

Thermal Management Optimization
The thick copper layer acts as a “cooling channel” to quickly transfer heat to the heat sink or enclosure to avoid localized overheating.
Case in point: automotive engine control systems are exposed to high temperatures for long periods of time, and 2oz copper PCBs ensure circuit stability.

Mechanical Reliability
Shock resistance is improved by more than 30%, suitable for industrial equipment or automotive electronics with frequent vibration.

2oz copper PCB

2oz copper PCB

Core Application Areas

Électronique automobile
Control modules, engine control systems, airbags and other critical components need to withstand high temperatures, corrosion and mechanical stress.

Pouvoir & Energy
Modules d'alimentation, DC-DC converters, solar inverters, etc., need to handle high power conversion and distribution.

Industrial Automation
High-power motor drives and automation equipment control require circuit boards with high conductivity and durability.

Emerging Fields
High-end products such as 5G base stations, Serveurs d'IA, etc., have stringent requirements for PCB layers, precision and heat dissipation performance.

Design Recommendations for 2oz Copper PCBs

In order to fully utilize the advantages of 2oz copper foil thickness in circuit board design, design engineers should consider the following layout and wiring guidelines:

Reasonable use of space: 2oz copper supports finer line widths and spacing, allowing for a more compact device layout. Components can be appropriately dispersed during design to fully utilize the extra space.

Shorten wiring paths: Because 2oz copper has lower resistivity, there is less reliance on wider alignments, and shorter, more direct connections can be prioritized.

Optimize layer structure: Lower current densities allow for fewer board layers when the layout permits. Cependant, sufficient power and ground layers need to be maintained to ensure stability.

Reduced via size: Thanks to the high resolution capability of 2oz copper, smaller via designs can be used while maintaining good wiring density.

Increased component integration: Thinner copper wires make it easier to connect small package components, thereby increasing overall component density.

Controlling High Frequency Impedance: For high frequency applications, ensure that thin copper traces are routed as short as possible to avoid signal integrity issues caused by long or narrow traces.

Reduce thermal structure: Si les conditions permettent, remove some heat sinks to reduce overall thermal resistance.

Increase copper-filled areas: Enhance heat dissipation efficiency and electromagnetic interference (EMI) shielding effect through reasonable copper surfacing, while maintaining a safe distance from signal lines.

Avoid excessive fragmentation of planar layers: Minimize fragmentation of the power and ground layers and improve continuity through multi-point over-hole connections.

Focus on edge spacing: Under high-precision etching processes, special attention needs to be paid to the alignment gap at the edge of the board to avoid processing defects.

Optimize design rules: Tighten the design grid and DRC (Design Rule Check) parameters to accommodate the manufacturing capacity of 2oz copper boards.

Pay attention to pad-via-hole matching: In high-density wiring, ensure that the design of pads and vias meets reliability requirements to avoid soldering problems.

Through rational layout and standardized wiring strategies, 2oz copper PCBs can not only effectively reduce board size, but also significantly improve electrical performance and help control manufacturing and assembly costs!

Résumé

With its high conductivity, thermal performance and mechanical strength, 2oz copper PCBs have become the first choice for high-power, high-reliability electronic devices. With the rapid development of automotive electronics, new energy and AI fields, its market demand will continue to grow. The design and manufacturing process needs to focus on line compensation, process optimization and thermal design to ensure product performance and yield. In the future, intelligent production and the application of environmentally friendly materials will further promote the technological innovation and industrial upgrading of thick copper PCB.

Quel est le processus d'assemblage PCB?

Comme nous le savons tous, Circuit Circuit Bancar (PCB) est un composant central indispensable dans les appareils électroniques modernes, lors de l'assemblage de la carte de circuit imprimé (PCBA) est le processus de montage des composants électroniques sur les PCB et les rends connectés au circuit par le soudage et d'autres processus. Dans cet article, Nous présenterons les concepts liés au PCBA et le flux de traitement de PCBA.

Qu'est-ce que l'assemblage de PCB?

PCBA, ou assemblage de la carte de circuit imprimé, est une partie importante de la conception de circuits électroniques.
Ce n'est pas seulement une simple carte de circuit imprimé (PCB), Mais composants électroniques (comme les composants SMD) sont montés sur la carte PCB et formés en un système de circuit complet par le soudage et d'autres processus.
Le PCBA est largement utilisé dans toutes sortes de produits électroniques, comme les téléviseurs, ordinateur, téléphones portables, Électronique automobile et équipement médical, etc.. Il s'agit d'un composant central indispensable pour la connexion électrique et la transmission du signal dans ces appareils.

Composants de base des assemblages de la carte de circuit imprimé

1. Composants de la structure de base

Substrat: En matériau isolant (par exemple. FR-4 Résine époxy) qui fournit un support mécanique et une isolation électrique.
Couche de plomb et feuille de cuivre: feuille de cuivre gravée pour former un réseau de prospects pour la transmission du courant et des signaux.
Pavés de soudure et vias: Les plaquettes de soudure sont utilisées pour souder les broches des composants et les vias connectent différentes couches du circuit.
Solder Mask et Silkscreen: Le masque de soudure (revêtement vert) protège la couche externe des circuits, et l'écran à soie étiquette les emplacements des composants et les identifie.
Montage des trous et connecteurs: Pour réparer la carte ou connecter d'autres appareils.

2. Composants actifs

Circuits intégrés (IC): composants de base, fonctions logiques complexes intégrées, comme les microprocesseurs, mémoire.
Transistor (Tube à effet triode / champ): Utilisé pour l'amplification du signal, commande de commutation.
Diode: conductivité unidirectionnelle, Utilisé pour la rectification, stabilisation de tension.
Capteurs: détecter les paramètres environnementaux (par exemple. température, lumière) et les convertir en signaux électriques.
Actuateur (relais, moteur): Selon le signal de contrôle pour effectuer l'action.

3. Composants passifs

Résistance: limiter le courant, diviseur de tension et de courant.
Condensateur: stocker l'énergie électrique, filtration, couplage.
Inducteur: stockage de l'énergie magnétique, filtration, oscillation.
Transformateur: conversion de tension, correspondance d'impédance.
Oscillateur en cristal: Fournir des signaux d'horloge pour assurer un fonctionnement stable de l'équipement.

4. Composants de connexion et de protection

Connecteur: Connexion entre les conseils ou l'équipement (comme des rangées d'épingles, prises).
Fusibles: protection contre les surintensités.
Variateur / Diode de suppression transitoire: tension anti-surfacturée.
Filtre: Supprime le bruit et améliore la qualité du signal.

Le processus de base de l'assemblage PCB

Production PCBA, C'est-à-dire, PCB Bare Board via le placement des composants, plug-in, et terminer le processus de soudage. Ce processus couvre un certain nombre de procédures, y compris le traitement du placement SMT, Traitement de l'insertion de trempette, Tests PCBA, revêtement à trois, et la dernière inspection visuelle et envoi d'emballage. Chaque étape est critique et fonctionne ensemble pour assurer la qualité et les performances du PCBA.

Traitement SMT SMD

1. Baisse du conseil d'administration
Ce lien au début de la ligne de production SMT joue un rôle crucial, Il garantit que les cartes PCB peuvent être transférées sur la ligne de production de manière ordonnée et efficace, garantissant ainsi la continuité et l'efficacité de la production.

2. Impression de pâte de soudure
L'impression de pâte de soudure est un élément clé du traitement du placement SMT, qui implique l'impression précise de la pâte de soudure sur le circuit imprimé par des moyens manuels à travers le pochoir de la machine à imprimer. Cette étape nécessite non seulement une machine d'impression professionnelle (comme la table à imprimer à la main) et raclette, mais nécessite également un contrôle strict de la composition de la pâte de soudure, résolution d'impression, précision, et épaisseur et uniformité de la pâte de soudure.

3. Placement en machine
Le placement sur la machine est les composants SMD conformément au diagramme de processus ou aux exigences de BOM, Grâce à la programmation de la machine SMD ou à l'alignement manuel, Un montage précis à la carte de circuit imprimé a été imprimé avec une bonne pâte de soudure.

4.Soudeur de reflux
Dans l'impression de pâte de soudure et sur la machine après le patch, Afin de s'assurer que les composants peuvent être fermement soudés sur la carte PCB, Le soudage de reflux doit être effectué. Ce lien à travers le chauffage à haute température pour faire fondre la pâte de soudure, de sorte que les composants et les coussinets de PCB, afin de terminer le soudage.

5.Inspection AOI
L'AOI post-Farn est un lien clé de la chaîne de production. Il est via la méthode de reconnaissance graphique sera stockée dans l'image numérisée standard du système AOI et la détection réelle de l'image à titre de comparaison, afin d'obtenir les résultats des tests. Les points techniques de ce lien incluent la norme d'inspection, force de détection, Taux de détection de faux, position d'échantillonnage, Taux de couverture et angle mort. Ses éléments d'inspection couvrent un large éventail de problèmes possibles tels que les pièces manquantes, inverse, droit, soudure cassée, Mauvaises parties, Moins de boîte, jambes déformées, Travail continu et plus d'étain.

Traitement des insert de plongée

Insertion de plongeon, Également connu sous le nom d'emballage de DIP ou de technologie d'emballage en ligne à double rangée, est un processus qui emballe les puces de circuit intégrées sous la forme d'une insertion en ligne à double rangée.

1.Insertion manuelle
Dans ce lien, Le PCB passe par la rotation de la chaîne, et les travailleurs doivent insérer les pièces et les composants moulés avec précision et correctement à la position correspondante du PCB en fonction de l'instruction de travail (applicable aux composants à travers le trou).

2. Soudure d'onde
La soudure d'onde est une sorte de soudure fondu avec l'aide de la pompe, dans le réservoir de soudure pour former une forme spécifique du processus d'onde de soudure. Pendant le processus de soudage, Le PCB avec des composants insérés passe à travers la chaîne de convoyeur et passe à travers l'onde de soudure à un angle spécifique et à la profondeur d'immersion, réalisant ainsi une connexion solide des joints de soudure.

3. Tranche manuelle
Une fois la soudure d'onde terminée, La carte PCB doit être coupée manuellement. Cette étape implique des composants de plug-in de carte PCB manuels à la surface des broches exposées aud, conformément aux dispositions des instructions de fonctionnement pour la coupe. Le but de couper l'opération du pied est de s'assurer que la hauteur des épingles des composants au bon endroit, tout en évitant les dommages au corps des composants et à son pad.

4. Soudure manuelle
Dans le processus de soudage manuel, La nécessité des anomalies de soudage de la carte PCB, comme la fausse soudure, fuite de soudure, Moins de boîte, étain, etc., Pour se réparer en temps opportun. En même temps, pour les composants de l'insertion d'anomalies, comme biaisé, flottant haut, moins de pièces, mauvaise insertion, etc., doivent également être traités en conséquence pour assurer la qualité du soudage.

Traitement des insert de plongée

Traitement des insert de plongée

Lien de test

1.Test des TIC

Le test des TIC est conçu pour examiner les caractéristiques de base des composants pour assurer de bonnes performances. Pendant le processus de test, De (non-conforme) et ok (qualifié) Les produits sont placés séparément pour faciliter le traitement ultérieur. Pour les résultats des tests pour la carte de circuit imprimé OK, Les étiquettes de test TIC correspondantes doivent être apposées, et séparé de la mousse, Afin de faciliter le tube ultérieur.

2.Test FCT

Le test FCT est conçu pour vérifier de manière complète l'intégrité fonctionnelle de la carte de circuit imprimé. Dans le processus de test, De (défectueux) et ok (qualifié) strictement différencié, et sont correctement placés. Pour les circuits imprimés avec les résultats des tests OK, Ils doivent être étiquetés avec les étiquettes de test FCT appropriées et isolés de la mousse pour faciliter le suivi et la gestion ultérieurs. En même temps, Si vous devez générer un rapport de test, Vous devez vous assurer que le numéro de série du rapport correspond au numéro de série sur la carte PCB. Pour les produits NG, Ils doivent être envoyés au service d'entretien pour réparation, Et faites un bon travail d'enregistrement du rapport de maintenance des produits défectueux.

Revêtement de peinture à trois

Peinture à trois, comme une sorte de revêtement avec des fonctions spéciales, est largement utilisé dans la protection PCBA. Son rôle est de fournir une protection complète pour les composants électroniques, résister efficacement à l'érosion de l'humidité, Spray Salt et substances corrosives. En pulvérisant la peinture à trois, Il garantit non seulement que les produits fonctionnent de manière stable sous l'environnement sévère d'une humidité élevée et d'un spray élevé, mais étend également considérablement leur durée de vie.

Inspection visuelle pour l'emballage et l'expédition

Avant l'emballage et l'expédition, Une inspection manuelle doit être effectuée pour assurer la qualité du produit, La norme IPC610 est une base importante pour l'inspection, Se concentrer sur la vérification si la direction des composants sur le PCBA est correcte, comme IC, diodes, transistors, condensateurs de tantale, condensateurs et commutateurs en aluminium et ainsi de suite. En même temps, il est également nécessaire de vérifier soigneusement les défauts après le soudage, comme le court-circuit, circuit ouvert, fausses parties, Faux soudures, etc., Pour s'assurer que les produits peuvent fonctionner de manière stable et répondre aux exigences des clients.

À la recherche d'un fournisseur de services d'assemblage PCB?

LST est une usine avec plus que 20 Années d'expérience dans l'assemblage de PCB, Nous fournissons aux clients des services de fabrication électronique stables et pratiques, Fabrication clé en main à un guichet. Si vous avez un projet de fabrication, Veuillez contacter le service client, Nous vous répondrons à la première fois.

Quels sont les avantages de l'utilisation de PCB flexible?

In the realm of printed circuit boards (PCBS), flexible PCBs stand out as a unique category, complementing their traditional rigid counterparts. In a wide range of applications, flexible PCBs demonstrate capabilities that rival — and sometimes surpass — those of rigid PCBs. To explore the charm and versatility of flexible PCBs, this article offers an in-depth analysis of their various types and real-world applications.

What Is a Flexible Circuit Board?

An FPC (Flexible Printed Circuit), often referred to as asoft board,” is a member of the PCB family. Made with flexible substrates such as polyimide or polyester films, FPCs boast high wiring density, lightweight construction, thin profiles, and exceptional bendability and flexibility. These boards can endure millions of dynamic flexing cycles without damaging the circuitry, making them ideal for complex spatial layouts and three-dimensional assembly. By integrating component mounting and wiring into a single structure, FPCs achieve a level of performance that rigid PCBs often cannot match.

Basic Structure of an FPC

Copper Film (Copper Foil Substrate)

  • Feuille de cuivre: A crucial material in FPCs, copper foil is available in two types — electrolytic copper and rolled annealed (RA) copper — with common thicknesses of 1oz, 1/2oz, and 1/3oz.

  • Substrate Film: Supports the copper foil and typically comes in thicknesses of 1 mil or 1/2 mil.

  • Adhésif: Used during manufacturing to bond layers, its thickness varies depending on customer requirements.

Coverlay (Protective Cover Film)

  • Cover Film: Primarily used for surface insulation, usually with thicknesses of 1 mil or 1/2 mil, applied together with adhesive layers.

  • Release Paper: Employed during manufacturing to prevent foreign matter from adhering to the adhesive before lamination, Simplifier le processus de production.

Stiffener (PI Stiffener Film)

  • Stiffener: Enhances the mechanical strength of the FPC, facilitating surface-mount assembly. Typiquement, stiffeners range from 3 mil to 9 mil in thickness and are bonded with adhesives.

  • EMI Shielding Film: Protects the internal circuits from external electromagnetic interference, ensuring the stability and reliability of electronic devices.

Types of Flexible PCBs

Types of Flexible PCBs

Types of Flexible PCBs

As a major innovation within the PCB industry, flexible PCBs not only offer exceptional performance but also come in a wide variety of types. Their versatility greatly enriches the design possibilities for electronic products and meets the demands of increasingly complex applications. Below is an overview of the most common types of flexible PCBs and their typical uses:

  1. Single-Sided PCB flexible
    Featuring a simple structure with a single conductive layer, these PCBs are cost-effective and ideal for basic applications.

  2. Double-Sided Flexible PCB
    With copper layers on both sides connected through metallized vias, double-sided flexible PCBs offer greater functionality for more complex scenarios.

  3. PCB flexible multicouche
    Built with multiple layers of copper and dielectric material stacked alternately, these PCBs achieve high elasticity while delivering superior performance.

  4. Rigid-Flex PCB
    Combining both rigid and flexible circuits into a single board, rigid-flex PCBs support high-density wiring and sophisticated layout designs.

  5. PCB flexible HDI
    Featuring high-density interconnect (HDI) designs, these boards are lightweight, compact, highly integrated, and offer excellent electrical performance.

  6. Sculptured Flexible Circuit
    Designed with variable trace thicknesses to meet specific localized requirements, these circuits are ideal for intricate electronic applications.

  7. Polymer Thick Film Flexible PCB
    Manufactured using screen-printing techniques, these low-cost flexible circuits are best suited for low-voltage applications.

  8. Dual Access/Backside Flexible PCB
    A single-sided design that allows circuit access from both sides, simplifying the layout of complex circuitry.

  9. Single-Layer Flexible FPCB
    Comprising a base layer, adhesive, and a copper layer, this straightforward structure emphasizes protection of the conductive areas.

  10. Dual Access/Backside FPCB
    Similar in structure to a single-layer FPCB but with laser-drilled openings to access the copper layer, significantly enhancing design flexibility.

Features of Flexible PCBs

  1. Flexibilité:
    Les PCB flexibles peuvent se plier et se plier sans compromettre la fonctionnalité du circuit, allowing for freedom of movement in three-dimensional spaces.

  2. Léger et mince:
    Par rapport aux PCB rigides, Les PCB flexibles sont beaucoup plus minces et plus légers.

  3. Miniaturized Design:
    Thanks to their ability to bend in 3D space, flexible PCBs enable the creation of more compact electronic products.

  4. Haute fiabilité:
    Flexible PCBs offer greater resistance to vibration and shock compared to rigid boards, enhancing overall reliability.

  5. High-Temperature Resistance:
    These PCBs can operate reliably in high-temperature environments, demonstrating outstanding thermal stability.

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

PCB flexible (FPCS) have become increasingly indispensable in modern electronics due to their unique physical properties and design advantages. Below is a detailed exploration of their core strengths:

1. Exceptional Flexibility and Spatial Adaptability

  • Bendable and Foldable Design:
    Utilizing flexible substrates such as polyimide (PI) or polyester (ANIMAL DE COMPAGNIE), FPCs can bend, fold, or even roll within three-dimensional space, breaking the two-dimensional limitations of traditional rigid PCBs. Par exemple, in foldable smartphones, FPCs are used in hinge areas, enduring hundreds of thousands of folds without failure.

  • Space Optimization:
    With thicknesses as low as 0.1 mm and weighing only 50%-70% of a rigid PCB, FPCs significantly enhance space utilization inside devices. In smartphones, FPCs seamlessly connect the mainboard to the display and camera modules, enablingzero-gapdesigns.

2. Lightweight Design and High Reliability

  • Weight Reduction and Cost Savings:
    The lightweight nature of FPCs makes them ideal for aerospace and wearable devices. Par exemple, satellite electronics systems utilizing FPCs see weight reductions of over 30%, while also minimizing the need for bulky connectors and reducing overall assembly costs.

  • Environmental Resistance:
    PI substrates withstand temperatures up to 250°C and exhibit excellent chemical and vibration resistance, making them suitable for harsh environments such as automotive engine compartments and industrial control systems.

3. Design Freedom and Integration Capabilities

  • 3D Routing:
    FPCs can route along curved surfaces, supporting innovative structural designs. In smartwatches, FPCs are integrated into the straps to flexibly connect sensors to the mainboard.

  • High-Density Integration:
    With technologies like laser drilling and fine-line patterning, FPCs can achieve line widths and spacings as small as 20μm/20μm, meeting the miniaturization demands of devices such as implantable medical equipment (Par exemple, neural stimulators) for multi-channel signal transmission.

4. Dynamic Adaptability and Durability

  • Extended Flexing Lifespan:
    Designs using serpentine routing patterns and rolled annealed (RA) copper allow FPCs to endure over 100,000 bending cycles, ideal for dynamic applications like flip phones.

  • Shock Absorption:
    Flexible substrates absorb mechanical stresses, reducing the risk of solder joint failures caused by vibrations. In automotive electronics, FPCs are used in airbag control modules to ensure signal stability even under extreme collision conditions.

5. Cost Efficiency and Manufacturing Productivity

  • Long-Term Cost Benefits:
    Although the unit cost of FPCs may be higher, their ability to reduce the need for connectors and simplify assembly processes lowers overall system costs in mass production. Par exemple, integrated FPC modules in smartphones are 15%-20% more cost-effective than traditional cable harness solutions.

  • Rapid Production Support:
    FPCs can be produced with robotic automation, supporting small-batch, multi-variety manufacturing, ideal for the fast-paced iteration cycles of consumer electronics.

Typical Application Scenarios

  • Électronique grand public:
    Display connections and camera modules in smartphones and tablets.

  • Dispositifs médicaux:
    Implantable pacemakers and miniature diagnostic device sensor circuits.

  • Électronique automobile:
    Lightweight wiring for engine management systems and advanced driver-assistance systems (ADAS).

  • Aérospatial:
    Radiation-resistant flexible circuits for satellite antennas and UAV control systems.

Conclusion

With the rapid rise of wearable devices, flexible displays, and smart technologies, the demand for flexible PCBs is experiencing explosive growth. In an era where electronic products increasingly prioritize lightweight, thin, compact, and highly efficient designs, ultra-thin and stretchable flexible circuits are poised to unlock immense market potential and drive the next wave of advancements in electronic devices and related technologies.