Archive d’auteur pour : administrateur
A propos de Personnel administratif
Cet auteur n’a pas encore écrit sa bio.
Mais nous sommes fiers de dire que Personnel administratif a déjà contribué aux publications 314.
Publications par Personnel administratif
Classification des technologies de montage de surface pour PCB en céramique
/dans Connaissances techniques PCB/par Personnel administratifCeramic circuit boards are a new class of materials known for their high-temperature stability, excellent insulation properties, low thermal expansion coefficient, and superior processability. These characteristics make them widely used in high-temperature and high-frequency circuits, électronique de puissance, and electromagnetic compatibility applications.
As electronic technologies continue to advance, the use of ceramic PCBs is becoming increasingly prevalent. Among their key technological aspects, Technologie de montage de surface (Smt) plays a crucial role. This article explores the classification of SMT techniques for ceramic PCBs and analyzes their prospects in the electronics industry.
Classification of Surface Mount Technologies for Ceramic PCBs
1. Thin Film Method (DPC – Direct Plated Copper)
Processus: A metal seed layer is deposited on the ceramic surface using magnetron sputtering or vacuum evaporation, followed by electroplating to thicken the copper layer. Photolithography and etching are then used for circuit patterning.
Caractéristiques techniques:
-
Haute précision: Line width/spacing can reach 20μm, suitable for high-frequency, high-density circuits.
-
Material Compatibility: Supports substrates such as alumina (Al₂O₃) and aluminum nitride (Aln), offering excellent surface flatness.
Applications typiques: -
Éclairage LED: High thermal conductivity (AlN substrate up to 230 W/m·K) ensures efficient heat dissipation.
-
Microwave & RF Devices: Low dielectric loss (ε_r ≈ 9) meets 5G/6G communication requirements.
2. Thick Film Method (TFC – Thick Film Ceramic)
Processus: Conductive paste containing metal and glass powders is screen-printed onto a substrat en céramique and then sintered at high temperatures to form circuits.
Caractéristiques techniques:
-
Cost-Effective: Simple process with low equipment costs, though line width precision is limited (≥0.1 mm).
-
Material Constraints: Conductive layer thickness is typically 10–20μm, suitable for low- to medium-power applications.
Applications typiques: -
Électronique automobile: Used in ECUs and control modules requiring resistance to high temperatures (>150° C) and mechanical vibration.
3. Co-fired Method (HTCC / LTCC)
High-Temperature Co-fired Ceramic (HTCC):
-
Processus: Sintered at 1650–1850°C, involving multilayer ceramic green tapes printed with circuits and laminated.
-
Avantages: Haute résistance mécanique (flexural strength >400 MPa), ideal for aerospace applications.
Céramique co-cuite à basse température (LTCC):
-
Processus: Sintered at 800–950°C; allows integration of passive components like resistors and capacitors.
-
Avantages: Excellent high-frequency performance (Q factor >500), suitable for 5G filters.
4. Direct Copper Bonding Method (DBC / AMB)
Cuivre lié directement (DBC):
-
Processus: A Cu/O eutectic liquid phase is formed at 1065–1083°C, bonding copper foil directly to the ceramic substrate.
-
Avantages: High thermal conductivity (Al₂O₃ substrate up to 25 W/m·K), widely used in IGBT modules.
Active Metal Brazing (AMB):
-
Processus: Utilizes active solders (containing Ti, Ag) to enhance bonding strength and reliability.
-
Avantages: Excellent thermal cycling performance (survives 1000 cycles from –55°C to 200°C without failure).
Avantages de la technologie de montage en surface (Smt) for Ceramic PCBs
-
Haute conductivité thermique:
Surface mount technology enhances the thermal performance of ceramic PCBs, improving the overall reliability and efficiency of electronic devices. -
Superior Wear Resistance:
SMT improves the wear resistance of ceramic substrates, thereby extending the operational life of the equipment. -
High Mechanical Strength:
SMT increases the mechanical robustness of ceramic PCBs, ensuring enhanced safety and durability of electronic systems. -
Environmental Friendliness:
Ceramic PCBs with advanced SMT can reduce electromagnetic emissions, contributing to better environmental compliance and reduced interference. -
Design Flexibility:
SMT enables more flexible design configurations, allowing ceramic PCBs to meet the varying demands of different electronic applications.
SMT Process Flow for Ceramic PCBs
The SMT process for ceramic PCBs is similar to that for traditional organic substrates, but must be optimized to accommodate the unique properties of ceramic materials:
-
Substrate Preparation and Surface Treatment
-
Cleaning and Polishing: Remove surface contaminants to ensure flatness (surface roughness Ra < 0.1 µm).
-
Traitement de surface: Use Electroless Nickel Immersion Gold (Accepter) or Electroless Nickel Palladium Immersion Gold (Enépique) for enhanced solderability. ENEPIG includes a palladium layer to reduce “tampon noir” defects, making it ideal for fine-pitch components such as BGAs.
-
-
Impression de pâte de soudure
-
Paste Selection: Choose high-viscosity lead-free solder paste (Par exemple, SnAgCu alloys) to prevent slump.
-
Printing Parameters: Precisely control squeegee pressure and speed to ensure consistent solder paste thickness (typically 25–75 μm).
-
-
Component Placement and Reflow Soldering
-
High-Speed Placement Machines: Must be adapted for the rigidity of ceramic substrates to minimize mechanical stress.
-
Reflow Profile: Use a stepped temperature ramp to mitigate stress from mismatched thermal expansion between ceramic and components. Peak temperature should be maintained between 240–260°C. Nitrogen atmosphere is preferred to reduce oxidation.
-
-
Inspection et reprise
-
AOI (Inspection optique automatisée): Used to check solder paste quality and component alignment.
-
Inspection des rayons X: Essential for bottom-terminated components like BGAs, to detect voids in solder joints.
-
Rework Process: Utilize localized heating platforms with ±2°C accuracy to prevent damage to adjacent components.
-
Conclusion
The classification of surface mount technologies for ceramic PCBs must consider a combination of process capability, material properties, and end-use application. Current trends are moving toward ultra-fine precision (line widths <10 µm), high-frequency performance (5G+), and eco-friendly practices (lead-free and recyclable). Innovations such as 3D Impression and laser activation are emerging as key enablers. Material choices must balance performance with cost efficiency.
With the rapid rise of industries such as new energy vehicles and 5G communications, demand for ceramic PCBs is expected to grow steadily. Future technological advancements will focus on cross-disciplinary integration and intelligent manufacturing.
Analyse de la technologie d'emballage de PCB en céramique
/dans Connaissances techniques PCB/par Personnel administratifL'emballage en céramique est une méthode permettant d'enfermer des composants électroniques dans un substrat en céramique. Ce type d'emballage offre une résistance supérieure à la chaleur, résistance à l'humidité, résistance à la corrosion, et immunité aux interférences électromagnétiques. Il contribue également à réduire le bruit électrique et thermique à l'intérieur de l'emballage., ce qui le rend idéal pour les appareils électroniques hautes performances tels que les amplificateurs de puissance haute fréquence, émetteurs-récepteurs de données à grande vitesse, et amplificateurs à faible bruit.
Avantages de l'emballage en céramique:
-
Haute résistance à la chaleur: Les matériaux céramiques ont généralement des points de fusion élevés et peuvent résister à des températures élevées.. Cela permet aux emballages en céramique de fonctionner de manière fiable dans des environnements à haute température sans dégradation des performances..
-
Excellente résistance à l'humidité: Avec de fortes caractéristiques d'étanchéité et de résistance à l'humidité, les matériaux céramiques sont bien adaptés à une utilisation dans des conditions humides. Leurs performances restent stables malgré les fluctuations d’humidité.
-
Résistance exceptionnelle à la corrosion: Les matériaux céramiques sont très résistants à la plupart des produits chimiques, y compris les acides, socles, sels, et solvants organiques. Cela les rend adaptés à une utilisation dans des environnements chimiques difficiles sans risque de défaillance induite par la corrosion..
-
Interférence électromagnétique supérieure (EMI) Blindage: Les céramiques offrent d'excellentes propriétés de blindage EMI, minimiser l’impact des interférences électromagnétiques externes. Cela permet un fonctionnement stable dans les applications haute fréquence sans perte de performances due aux EMI.
Présentation du processus d'emballage des PCB en céramique
1. Étape de préparation des copeaux
-
Découpage de plaquettes:
Utilisation d'une technologie de découpe laser de précision, la plaquette est segmentée en puces individuelles avec une précision au micron, garantissant des dimensions précises des puces pour répondre aux exigences d'assemblage des substrats céramiques. -
Nettoyage des copeaux:
Nettoyage chimique en plusieurs étapes, y compris dégraissage avec des solvants organiques et rinçage à l'eau déminéralisée, élimine les résidus de coupe pour éviter une mauvaise soudure ou une panne électrique.
2. Fabrication de substrats en céramique
-
Formation de substrat:
-
Coulée de bande: Boue de céramique (Par exemple, alumine, nitrure d'aluminium) est moulé en feuilles minces, avec tolérance d'épaisseur contrôlée à ± 5 μm, adapté à la production en grand volume.
-
Pressage à sec: Combiné avec un pressage isostatique, ce procédé permet la fabrication de substrats de forme complexe avec une uniformité de densité améliorée.
-
-
Métallisation:
-
Cuivre lié directement (DBC): À des températures élevées, le brasage actif crée un lien fort entre les couches de céramique et de cuivre, atteindre des épaisseurs de cuivre supérieures à 300 μm.
-
Cuivre plaqué directement (DPC): Le cuivre est électrolytique après motif photolithographique, permettant le routage multicouche et via le remplissage, avec une largeur/espacement de ligne jusqu'à 10 μm.
-
-
Forage au laser:
La technologie laser avancée forme des microvias (diamètre <0.06MM) avec parois lisses (rugosité <0.3µm), permettant des interconnexions haute densité.
3. Intégration puce-substrat
-
Attachement de matrice:
Les adhésifs à haute conductivité thermique tels que la pâte d'argent sont distribués avec un équipement de précision pour monter les puces sur des zones désignées du substrat.. Le faible retrait après durcissement minimise le stress thermique. -
Soudure:
Pour les appareils haute puissance, le brasage par refusion ou le soudage par ultrasons est utilisé pour former des liaisons métallurgiques, assurant à la fois la conductivité électrique et la stabilité mécanique.
4. Liaison de fils et emballage
-
Techniques de liaison:
-
Liaison de fils d'or/cuivre: La compression thermique ou l'énergie ultrasonique est utilisée pour connecter les fils de liaison entre les pastilles de puce et le substrat.. Les liaisons doivent supporter des cycles thermiques et des vibrations mécaniques.
-
Liaison à puce retournée (FC): La puce est retournée et directement interconnectée avec le substrat, éliminant les fils de liaison et minimisant les effets parasites — idéal pour les applications haute fréquence.
-
-
Encapsulation:
-
Étanchéité hermétique: Soudage parallèle ou scellement de frittes de verre (Par exemple, Systèmes PbO-B₂O₃-ZnO) est réalisé à ~450°C, atteindre des taux de fuite inférieurs à 1×10⁻⁸ Pa·m³/s.
-
Moulage de plastique: Pour applications non hermétiques, une encapsulation en résine époxy ou en silicone est utilisée pour améliorer la durabilité environnementale.
-
5. Post-traitement et tests
-
Tests électriques:
Intégrité du signal, correspondance d'impédance, et performances haute fréquence (10Transmission –20 GHz) sont vérifiés à l'aide d'outils tels que des analyseurs de réseau et des oscilloscopes. -
Tests de fiabilité:
-
Cyclisme Thermique: Simule les variations de température de -65°C à +250°C pour évaluer la fiabilité de la liaison substrat-puce.
-
Tests de chocs mécaniques: Évalue la résistance aux vibrations pour garantir la stabilité opérationnelle dans l’aérospatiale et d’autres environnements exigeants.
-
Technologies de processus clés dans l'emballage de circuits imprimés en céramique
1. Traitement laser de précision
Les technologies de perçage et de découpe au laser atteignent une précision au micron, permettant un routage haute densité (largeur/espacement des lignes jusqu'à 10 μm) et interconnexion 3D (couche intermédiaire via un diamètre aussi petit que 50 μm).
2. Métallisation et configuration de circuits
Processus DBC et DPC, combiné avec la photolithographie, créer des modèles de circuits haute résolution. Les substrats en nitrure d'aluminium offrent une conductivité thermique de 180 à 230 W/m·K et un coefficient de dilatation thermique (ETC ≈ 4,5 ppm/°C), puces de silicium étroitement assorties.
3. Technologie de co-cuisson multicouche
-
LTCC (Céramique cocuite à basse température):
Cuisson à ~850°C, intègre plusieurs couches de céramique et traces métalliques, permettant l'intégration de composants passifs. Idéal pour les antennes à ondes millimétriques 5G. -
HTCC (Céramique cocuite à haute température):
Cuisson à ~1600°C, offre une haute résistance mécanique (≥400MPa en flexion trois points) pour modules de puissance pour l'aérospatiale.
Applications de l'emballage de circuits imprimés en céramique
Électronique automobile
-
Unités de commande du moteur, Systèmes de sécurité (ABS, ESP):
Conçu pour résister à des températures élevées, humidité, et vibration. -
Systèmes de gestion de batterie:
Les substrats céramiques optimisent la conduction du courant et la dissipation thermique, améliorer la sécurité des véhicules électriques.
Télécommunications
-
5Antennes de station de base G et modules RF:
Une faible perte diélectrique garantit l'intégrité du signal. -
Appareils de communication par satellite:
Excellente résistance aux radiations qui s'adapte à l'environnement spatial difficile.
Aéronautique et Défense
-
Systèmes de guidage de missiles, Modules émetteurs-récepteurs radar:
Les substrats en nitrure d'aluminium supportent des températures extrêmes et des chocs mécaniques. -
Électronique militaire:
La résistance à la corrosion garantit un fonctionnement fiable dans des conditions de champ de bataille.
LED et électronique haute puissance
-
Éclairage LED haute puissance:
La conductivité thermique améliorée améliore l'efficacité lumineuse de plus de 30% et prolonge la durée de vie. -
Refroidisseurs de semi-conducteurs et radiateurs électroniques:
La capacité de courant élevée prend en charge un fonctionnement soutenu à haute puissance.
Modules de puissance à semi-conducteurs
-
IGBT et substrats MOSFET:
Nitrure de silicium (Si₃N₄) substrats à très haute résistance à la flexion (>800 MPa) sont bien adaptés aux applications haute tension.
Conclusion
En résumé, Le boîtier en céramique pour PCB est devenu une technologie vitale pour les applications électroniques haut de gamme en raison de ses excellentes performances thermiques., isolation électrique, et résistance aux températures élevées et à la corrosion. Comme des industries comme les communications 5G, électronique de puissance, et les véhicules électriques continuent d'évoluer, la demande d’emballages en céramique devrait croître rapidement. Il jouera un rôle de plus en plus important dans l’amélioration des performances des appareils et de la fiabilité globale du système..
Assemblage de circuits imprimés pour équipement médical
/dans Actualités de l'industrie/par Personnel administratifIn this era of rapid development of science and technology, medical equipment is increasingly important for the protection of human health. Le PCBA (Assemblage de la carte de circuit imprimé) inside the device, as its core component, the quality of its processing and assembly has a direct impact on the performance and stability of the device. Donc, as a purchasing staff of electronic equipment manufacturers, in-depth understanding of the various aspects of medical PCBA processing and assembly is particularly critical. Suivant, we will go into this field together, detailed analysis of medical PCBA processing and assembly process of several core links.
Five core advantages of medical electronics PCB assembly
1. Functional core platform
As the “central nerve” of medical electronics, PCB is responsible for signal acquisition, processing and transmission.
Typical applications include:
Complex signal processing in high-end medical imaging equipment (par exemple. CT, IRM).
High-speed data processing in vital signs monitoring systems such as electrocardiogram (ECG) and electroencephalogram (EEG).
Electronic control units for sophisticated therapeutic equipment such as ventilators and defibrillators
2. Technology Driver for Miniaturization
Reduces the size of medical electronic devices by up to 20% while improving functional integration through High Density Interconnect (HDI) technologie.
Key Application Example:
Non-invasive blood glucose meters Integrated multi-layer flexible circuit boards (jusqu'à 10 couches)
Compact probe driver circuits for portable ultrasound systems
Ultra-thin, biocompatible PCB structures for implantable devices.
3. Core Carrier of Intelligent Healthcare
Supports multi-sensor system integration and edge intelligent computing, and is a key component in the upgrade of intelligent healthcare.
Typical smart scenarios:
Intelligent infusion management system, combining temperature, flow rate and pressure sensing.
Remote diagnosis and treatment equipment, realizing dual-mode connection between 5G and Wi-Fi.
AI-assisted diagnostic equipment embedded with edge computing chips to improve analysis efficiency.
4. Highly Reliable Technology Guarantee
fully complies with international medical electronics standards to ensure safe and stable product operation.
Certification and testing include:
IPC-A-610 Level 3 assembly standard
ISO 10993 biocompatibility certification
Continuous aging test up to 96 hours or more
Critical process control:
Medical grade lead-free soldering technology
Conformal coating treatment for moisture, mold and salt spray resistance
Comprehensive AOI automatic optical inspection + flying probe electrical test
5. Innovation and R&D Accelerator
Rapid prototyping capability to significantly shorten the product development cycle.
Features include:
From design drawings to physical prototypes in as little as 2 semaines
Supports process validation for over 10 specialty functional materials
Emerging Application Scenarios:
Flexible and extensible circuits for wearable health devices.
Grande vitesse, high-precision control boards for surgical robots
Small implantable circuit systems for neuromodulators
Precision planning in pcb design stage
1. Functional positioning and structural layout optimization
Medical devices pose a higher challenge to the precision of PCBA design due to their complex functions. Design engineers need to rationally configure the size ratio, layer structure and device layout of the PCB board according to the core functions of the device. During the design process, the electrical characteristics, heat dissipation efficiency, compatibilité électromagnétique (EMC) and manufacturing process suitability must be considered simultaneously. With the help of professional EDA software, we ensure that the production process is optimized while the performance meets the standard.
2. Material Selection and Quality Assurance
The overall performance of PCBAs is highly dependent on the reliability of the materials used. The substrates, components and soldering materials commonly used in medical PCBs must meet the standards of medical grade and have the characteristics of high temperature resistance, corrosion resistance and non-toxicity. In the material preparation stage, all key materials should be comprehensive quality inspection, strict control to ensure that it meets the requirements of the medical industry for safety and stability.
High-precision execution of PCB manufacturing
1. Fine control of process flow
PCB, as the structural foundation of PCBA, has a manufacturing process that covers several key processes, such as board cutting, inner layer treatment, placage de cuivre, forage, exposition, developing, gravure, etc.. To ensure circuit accuracy and inter-layer connection, all key materials should be fully inspected to ensure that they meet the safety and stability requirements of the medical industry. In order to ensure line accuracy and inter-layer connection reliability, we need to rely on advanced manufacturing equipment and standardized process management. A ce stade, any small process deviation may cause defects in the subsequent SMT mounting or soldering process, affecting the electrical performance of the entire board.
2. Strict control of the manufacturing environment
High-quality Fabrication de PCB is inseparable from a clean, well-protected electrostatic production environment. Dust particles or electrostatic discharge can lead to board performance degradation or even failure. Donc, the need to carry out key processes in a clean room, and set up electrostatic protection measures to protect the stability and consistency of the PCB from the source.
Medical pcb smt assembly
1 SMT precision and speed
In the processing of medical PCBA boards, SMT placement plays a crucial role. High-precision mounter can realize the precise installation of components, and its error can even be controlled within 01mm, thus ensuring the accuracy of the component position, and significantly improve the production efficiency. En outre, the high-speed operation of the mounter also fully reflects the modern electronics manufacturing industry on the pursuit of efficient production.
2 Solder paste selection and printing quality
Solder paste as a key material for fixing components, its selection has a direct impact on product quality. According to the characteristics of different models and sizes of components, the need to choose the appropriate type of solder paste. En même temps, in the solder paste printing process, we must ensure that the solder paste can be uniformly and accurately printed to the PCB pads, laying a solid foundation for the subsequent welding process.
3 reflow soldering and temperature control
Reflow soldering is the core process of SMT chip processing. By precisely controlling the temperature profile of the exhaust gas furnace, you can ensure that the solder paste can fully melt and form a solid connection. The proper temperature profile is not only related to the quality of soldering, but also can effectively reduce the generation of soldering defects and defective products.
4 AOI Inspection and Quality Control
AOI (Inspection optique automatique) technology is widely used to detect the quality of welding. It visually inspects the completed soldered PCB boards through optical inspection means, and is able to detect and report soldering defects or errors in a timely manner, thus providing strong support for ensuring the high quality and reliability of medical PCBA boards.
Complementary aspects of DIP insert processing
For those components that cannot be mounted by SMT technology, such as large connectors, condensateurs électrolytiques, etc., they need to be processed by DIP (Dual Inline Package) plug-in processing. This step usually includes insertion, soudure d'onde and manual refill soldering. Although DIP insert processing is relatively less used in modern electronics manufacturing, it still occupies a place in the processing of medical PCBA boards. Ensuring the accuracy of the insertion and the reliability of the soldering is crucial to improving the overall product quality.
Functional Verification and System Debugging
After the PCBA has been processed and assembled, it enters the stage of functional verification and debugging. The core task of this link is to confirm that the circuit board functions run normally, and all components meet the design expectations. Through this process, we can effectively troubleshoot potential faults and improve the stability and safety of the whole machine.
1. Functional and aging double test
After completing the soldering process, the PCBA needs to be subjected to a series of system tests, including ICT (in-circuit test), FCT (Functional Completion Test) and aging operation test. These tests help to identify potential device anomalies, circuit short circuits or software defects, and are a key part of ensuring product reliability.
2. Debugging Process and Firmware Burning
According to the specific application requirements, the PCBA will be finely tuned to ensure that each module operates in concert. The debugging stage will check the performance of the chip, interface, power module and other key parts one by one. En outre, through the program burning tool, the software code will be implanted into the microcontroller or embedded chip, so that the equipment has the ability of independent control and logic judgment.
Finished product processing and packaging process
1. Board Cleaning and Protective Coating
In order to enhance the adaptability of PCBAs in changing environments, finished products need to be thoroughly cleaned after processing to remove residual flux, dust and impurities. Ensuite, the three protective coatings are applied to form a protective film against moisture, corrosion and pollution to enhance the durability of the circuit board in practical applications.
2. Finished product packaging and shipping security
After the final quality inspection to confirm that there is no error, PCBA products will enter the packaging process. The packaging process is strictly enforced anti-vibration, anti-static and sealing standards to ensure that the transportation process is not damaged. Before packaging, we also carry out appearance verification, function retesting and safety audit to ensure the integrity and consistency of the products at the time of shipment.
Avantages, Disadvantages and Applications of Aluminum PCB
/dans Actualités de l'industrie/par Personnel administratifPCB en aluminium, or aluminum substrate, is a type of printed circuit board that uses metallic aluminum as a substrate. Its structure usually includes a circuit layer (feuille de cuivre), an insulating layer and a metal base layer, with some high-end products adopting a double-sided or multilayer design. The core advantage of aluminum substrate is its excellent thermal conductivity, which can effectively reduce the operating temperature of electrical appliances and improve working efficiency and product life. En outre, it has good insulation, mechanical strength and stability, and small dimensional changes, which can replace fragile ceramic substrates and reduce the need for heat sinks, réduisant ainsi les coûts.
Advantages of Aluminum-based PCBs
Aluminum-based PCBs offer a variety of features and advantages that allow them to be used in a wide range of different electronic devices:
Lightweight Design
One of the primary considerations for electronic device manufacturers when choosing a PCB is its lightweight. Aluminum-based PCBs are lighter in weight, which not only helps to reduce the overall weight of the electronic device, but also makes the device more compact, in line with the modern trend of miniaturization of equipment. Because of this, aluminum-based PCBs have become the preferred choice for lightweighting solutions for many electronic products.
Dissipation de chaleur supérieure
Thermal performance is an important factor that every PCB must consider. Electronic components inevitably generate heat when working, and some components have higher heat and greater heat dissipation needs. The heat dissipation effect of aluminum-based PCBs is significantly better than that of metal-core PCBs made of other materials, which helps to maintain the stable operation of equipment. Donc, choosing aluminum-based PCBs can bring better heat dissipation experience.
Durable
Stability and durability are equally important when evaluating PCB materials. If the PCB itself is not durable, the lifespan of the entire device will be affected. Aluminum has excellent durability and the ability to maintain good performance over time, making it ideal for devices that run for long periods of time. Because of this, aluminum-based PCBs are widely considered to be a reliable manufacturing choice.
PCB en aluminium
Environmental Advantages
With the growing awareness of environmental protection, choosing environmentally friendly materials has become an important responsibility of the manufacturing industry. Aluminium, as a green material, is non-toxic and environmentally friendly, and its manufacturing and assembly processes are also more environmentally friendly. Adopting aluminum-based PCBs not only helps reduce the impact on the environment, but is also a smart move in line with the concept of sustainable development.
Rentable
From an economic point of view, aluminum-based PCBs are more cost-effective to manufacture. Aluminum materials are abundant and reasonably priced in the marketplace, making them relatively inexpensive to manufacture. Aluminum-based PCBs are the ideal economic solution for manufacturers with limited budgets who want to get the most out of the best cost.
Disadvantages of Aluminum-based PCBs
Despite the many advantages of aluminum-based PCBs, there are some shortcomings in their use that require attention during selection. The main limitations are shown below:
Limited double-layer design
Compared with traditional PCBs, aluminum-based PCBs are usually unable to achieve a double-layer structure. Most of the current aluminum-based PCB is mainly used for single-sided wiring, the manufacture of double-sided or multi-layer structure will face the problem of process difficulty and high cost. This is a limitation that needs to be overcome in the manufacturing process of aluminum-based PCBs.
Small-scale defects
Although aluminum-based PCBs perform well in terms of performance and functionality, some small-scale electrical strength or mechanical stress issues may still occur in practice. These potential defects mean that Aluminum-based PCBs still need to be further optimized and improved under specific application conditions.
Structural Composition of Aluminum-Based PCBs
Aluminum-based PCBs are typically composed of three distinct layers, and the functions and properties of each layer are described below:
Aluminum PCB structure
Conductive Copper Layer
This layer is first etched to form the circuit pattern. The thickness of the copper layer is usually similar to that of a conventional FR-4 sheet and is made from electrolytic copper foil. This layer of copper provides excellent conductivity to the circuit and can effectively carry higher currents to ensure overall stable performance.
Insulating Layer
Immediately below the copper layer is the dielectric layer, which is the key to heat dissipation and electrical isolation. The thermal performance of aluminum-based PCBs is largely dependent on the thermal conductivity of the layer. The more evenly distributed the insulating layer is, the more ideal the heat dissipation effect will be, which can help keep electronic components running at low temperatures. Its precision is critical to the overall durability of the PCB.
Metal Substrate Layer
The bottom layer is the metal substrate, with aluminum being the most common material choice. The material of the substrate depends on the application requirements. Aluminum is a commonly used metal due to its good price/performance ratio and excellent heat dissipation performance. Aluminum substrates are available in a variety of models, tel que 5052, 6061, 1060, etc., to meet diverse application requirements.
Applications of Aluminum Printed Circuit Boards
Most of the Assemblage PCB manufacturers prefer to opt for aluminum PCB assembly as it is suitable for various applications. Some of the applications of aluminum PCB are as follows.
1. LED Lighting Industry
Application Scenario: LED lamps (par exemple. street lights, indoor lighting, automobile headlights) generate a lot of heat due to high power density and need to dissipate heat quickly to ensure luminous efficacy and longevity.
Avantage:
Thermal conductivity: aluminum substrate thermal conductivity up to 1.0~2.0 W/(m-K), far more than the traditional FR-4 material (0.3 Avec(m-K)), effectively reduce the LED junction temperature.
2. Power electronic equipment
Application Scenario: Switching power supply, onduleur, DC/DC converter and other equipment that need to withstand high current and high temperature.
Avantage:
Heat dissipation and volume optimization: Aluminum substrates can replace heat sinks and reduce product volume by more than 30%.
3. Électronique automobile
Application Scenario: Engine Control Unit (ECU), Motor Drive Module, Battery Management System (GTC), etc..
Avantage:
High temperature and vibration resistance: Aluminum substrate can work stably in -40℃ to 150℃ environment, bending strength >200MPa.
4. Industrial control and automation
Application scenarios: programmable logic controllers (PLC), industrial robots, capteurs, etc..
Avantage:
Haute fiabilité: Aluminum substrate is corrosion resistant (passed salt spray test >3000 heures), adapting to harsh industrial environments.
5. Matériel de communication
Application scenarios: 5G base stations, routeurs, optical modules, etc.. requiring high stability circuit boards.
Avantage:
Low thermal resistance and low loss: aluminum substrate thermal resistance <0.2℃/W, dielectric loss <0.02, to protect signal integrity.
6. Matériel médical
Application Scenario: Surgical shadowless lamps, imaging equipment (such as CT, IRM), high-precision instruments and so on.
Avantage:
Environmental protection and safety: RoHS compliant, lead-free design to guarantee medical safety.
leadSintec: Trusted Aluminum PCB Manufacturer
While choosing the right PCB material is crucial, what is also not to be overlooked is finding a trustworthy Fabricant de PCB. In China, we are considered a leading PCB assembly manufacturer in the electronic printed circuit board industry, able to provide aluminum-based PCBs with excellent performance.
What’s more, you have every option to work with us to ensure that your PCB application solutions are always up to scratch. We always focus on the needs of our customers and tailor-make the most suitable aluminum-based PCB solutions after in-depth communication and detailed analysis.
We focus on high quality standards, the reliability of the soldering inside the PCB and cost-effectiveness. This enables us to provide our customers with long-lasting PCB products that maintain excellent heat dissipation even in high-temperature environments and continue to safeguard the operation of their equipment.
Quels sont les processus de l'ensemble PCB des véhicules électriques?
/dans Actualités de l'industrie/par Personnel administratifIn the automotive intelligence, electrification process accelerated today, automotive electronic circuit boards PCBA as the core carrier of the automotive electronic system, the processing process is precise and complex, any one of the links are related to the performance, reliability and safety of automotive electronic equipment. This article we will give you a detailed introduction to the electric car pcba assembly process, all-round control of the quality of electric car pcba.
The role of pcb in electric vehicles
PCB is the backbone of electronic equipment, providing a physical platform for installing and interconnecting various electronic components. In electric vehicles, pcb has a wide range of uses, y compris.
Battery Management System (GTC):The BMS monitors and manages the state of the battery to ensure optimal performance and safety. The system contains complex circuitry that requires high quality PCBs to efficiently handle power and data signals.
Power electronics: These include inverters, converters and chargers that manage the current between the battery and the motor. High-performance PCBs are essential to handle high currents and voltages.
Infotainment Systems:Modern electric vehicles are equipped with advanced infotainment systems that provide navigation, entertainment and connectivity. These systems rely on PCBs to seamlessly integrate various functions.
Systèmes avancés d'assistance à la conduite (ADAS): Technologies such as adaptive cruise control, lane keeping assist and collision avoidance require reliable PCBs to process data from sensors and cameras in real time.
Electric Vehicle PCBA Assembly Process
Préparation des matières premières
Circuit board substrate procurement: first of all, according to the specific needs of automotive electronics, select the appropriate circuit board substrate materials. In view of the harsh environment inside the car, large temperature changes, strong vibration and electromagnetic interference, usually with high heat resistance, haute résistance mécanique, good electromagnetic compatibility of the substrate, such as special modified FR-4 board or high-performance flexible board. These substrates should meet strict industry standards to ensure stable operation under complex working conditions.
Selection and procurement of electronic components: According to the design of the automotive electronic circuit, we accurately screen all kinds of electronic components, y compris les résistances, condensateurs, inducteurs, chips, etc.. The quality of the components directly determines the quality of the PC. The quality of the components directly determines the quality of the PCBA, so we must use products that meet the automotive-grade standards, with high reliability, wide temperature range adaptability and other characteristics. Purchased components need to undergo strict factory inspection to check the integrity of the appearance, the accuracy of the electrical parameters, to prevent defective products from entering the production line.
SMT Processing
Impression de pâte de soudure: Solder paste is printed onto the circuit board pads through high-precision stencils to ensure sufficient quantity and accuracy to avoid soldering defects. The stencil is laser cut or etched, and different pads correspond to different mesh holes in order to meet the packaging requirements of the components.
SMD: The components are quickly and accurately mounted onto the pads using high-precision mounting machines to ensure that tiny components such as 0201, BGA chips, etc.. are accurately aligned and pasted with solder paste.
Soudeur de reflux: After the placement is completed, the temperature profile is precisely controlled through a multi-temperature zone reflow oven to ensure that the solder paste melts and solidifies uniformly, forming a high-quality solder joint, avoiding damage to components, and ensuring the reliability of the soldering.
THT Insert Processing (if required)
Some of the automotive electronics PCBA also involves through-hole technology (Tht) processing link. For some larger power, high mechanical strength requirements or not applicable to SMT components, such as large electrolytic capacitors, relais, etc., need to use THT technology.
Insertion: Workers will insert the pins of the components into the pre-drilled holes in the circuit board, requiring the insertion of the right depth, straight pins, to ensure a good connection with the circuit board and the inner layer of the line. This process requires manual operation combined with auxiliary tooling to ensure the accuracy and consistency of the plug-in.
Soudure d'onde: After the plug-in is completed, the wave soldering equipment is utilized for soldering. Liquid solder to form a wave-like shape, the circuit board from the wave through the peak, so that the component pins and circuit board pads are fully infiltrated welding. The key to wave soldering is to control the solder temperature, wave height and soldering speed to ensure that the solder joints are full, no false soldering, while avoiding short circuits and other problems caused by too much solder.
Inspection and debugging
Contrôle de l'apparence: Comprehensively inspect the PCBA appearance, check the missing components, compenser, damage and defective solder joints and other issues, with the help of magnifying glass and other tools to ensure the quality of the appearance, to avoid potential safety hazards.
Electrical performance test: use professional equipment to test the PCBA electrical parameters, to confirm that the circuit connectivity, power module output and signal integrity in line with the design requirements.
Functional test: simulate the actual automotive environment, verify the actual working performance of PCBA through the test tooling to ensure its stable and reliable performance under various working conditions.
Three-proof processing
Considering the complexity of the automobile driving environment, automobile electronic PCBAs usually need three-proof (moisture-proof, mildew-proof, salt spray-proof) traitement. Special three-proof paint is used to form a protective film on the surface of PCBA by spraying, dipping or brushing to isolate the external moisture, moule, salt spray and other unfavorable factors and prolong the service life of PCBA.
PCB Manufacturing and Assembly Considerations for Electric Vehicles
Gestion thermique: The power electronics in electric vehicles generate a lot of heat. To prevent overheating, manufacturers need to use high thermal conductivity materials (par exemple. cuivre, aluminum substrates) and advanced cooling technologies (heat sinks, hot channels, liquid cooling, etc.), and manage the coefficients of thermal expansion between different materials to avoid damages triggered by temperature changes.
Haute fiabilité: EVs are often exposed to harsh environments such as vibration, temperature differences, moisture and dust, and PCBs must be highly reliable and durable. Manufacturers need to follow IPC standards (par exemple. IPC-A-600, IPC-A-610) and take protective measures such as revêtement conforme and encapsulation, and perform rigorous testing (temperature cycling, vibration, humidité, etc.) to ensure quality.
Miniaturization: PCBs are becoming increasingly miniaturized to fit compact vehicle designs, using HDI technology for microfabrication and multilayer stacking. Precision assembly and 3D Conception de PCB software ensure compact layouts and stable signal and power distribution.
High power density: The high power requirements of electric vehicles require PCBs that support high currents, using thick copper layers and wide alignments to ensure stability and minimize losses in the power layer. Effective grounding, shielding, insulation and safe distance design are also critical to ensure safety and EMI suppression.
Cost and Scalability: While pursuing high performance, manufacturers need to control costs and increase production flexibility. Automated production (Par exemple, AOI, Smt) can reduce labor costs and improve consistency. Cependant, there is still a need to balance innovation, cost and scale in the context of rapidly evolving technology.
Compliance with industry standards: Manufacturers must follow industry standards such as ISO 16750, IPC, and others to ensure that PCBs meet requirements for safety and performance. Compliance requires complete documentation, validation and process adjustments to adapt to changing regulations.
The Future of PCB Assembly for Electric Vehicles
The future of EV Assemblage PCB is bright, and the following trends are driving change in the industry:
Convergence of AI and IoT: As Artificial Intelligence (IA) Et l'Internet des objets (IoT) are increasingly used in EVs, the demand for high-performance PCBs increases. These advanced technologies require powerful processing and connectivity capabilities, driving the continued evolution of PCB design and assembly towards greater integration and intelligence.
Sustainable Manufacturing: Sustainability is increasingly in the spotlight, and environmentally friendly Fabrication de PCB processes are gaining more attention. Lead-free soldering, recyclable substrates, and energy-efficient production processes are all important initiatives to promote green manufacturing.
Growing demand for customization: The increasing diversity of electric vehicle models and features is increasing the demand for customized PCBs. Manufacturers need to provide flexible and customized solutions to meet the specialized requirements of different platforms and application scenarios.
Collaboration and standardization: Collaboration between OEMs, electronics manufacturers and industry standards organizations is driving standardization in PCB design and production. Standardization helps streamline production processes and ensures interconnectivity and compatibility between systems.
leadsintec’s excellent pcba partner for automotive electronics
LST specializes in automotive electronic circuit board PCBA processing field, with advanced production equipment, from high-precision solder paste printing machine, top-class mounter to precision reflow oven, professional testing instruments, to ensure that each processing step can meet the automotive quality standards. The company’s technical team is experienced and familiar with the automotive electronics industry specifications, providing one-stop PCBA processing services. En même temps, strict quality control system throughout the production process, through multiple rounds of testing and debugging, to ensure the delivery of each piece of automotive electronics PCBA has a high degree of reliability, for the booming development of the automotive industry escort.
Qu'est-ce que le partenaire EMS
/dans Nouvelles de l'entreprise/par Personnel administratifIndustrie 4.0 est profondément remodelé la façon dont les produits sont conçus, fabriqué et livré. Services de fabrication électronique (EMS) joue un rôle de plus en plus stratégique dans cette vague, Fournir des services de fabrication et d'assemblage intégrés pour une large gamme de composants et d'appareils électroniques, activer les fabricants d'équipements d'origine (OEMS) se concentrer sur leur base de conception, Innovation et marketing sans avoir à investir d'énormes sommes d'argent dans la construction de leurs propres lignes de production.
Partners EMS, représenté par LST, sont en mesure de fournir aux clients OEM des solutions de fabrication efficaces qui leur permettent de relever les défis de la fabrication d'électronique complexe tout en réduisant les dépenses en capital initiales et en réalisant une réponse de marché flexible et efficace.
Qu'est-ce que EMS?
EMS (Services de fabrication d'électronique) est un modèle d'entreprise dans lequel un tiers fournit des services de fabrication liés à l'électronique aux fabricants de marque ou aux fabricants d'équipements d'origine (OEMS), non seulement en fournissant un assemblage de cartes de circuit imprimé (PCBA), mais aussi couvrant l'ensemble du processus de fabrication, à partir de l'approvisionnement des composants, essai, assemblage de machines, Logistique et distribution à la prise en charge après-vente. Les vendeurs d'EMS fournissent non seulement l'assemblage de la carte de circuit imprimé (PCBA), mais peut également couvrir l'ensemble du processus de fabrication à partir de l'achat de composants, essai, Assemblage de la machine complète, Logistique et distribution à la prise en charge après-vente.
Qu'est-ce qu'un partenaire EMS?
Un partenaire EMS est un fournisseur de services d'externalisation professionnelle qui a établi une relation approfondie avec les marques dans le domaine du service de fabrication électronique (EMS). Ces partenaires aident les marques à se concentrer sur Core R&D et ventes, Tout en réduisant les coûts et en améliorant l'efficacité en fournissant une chaîne complète de services à partir de la conception du produit, fabrication, Gestion de la chaîne d'approvisionnement à la logistique et à la distribution.
Services de base des partenaires EMS
1.Gestion de la fabrication et de la chaîne d'approvisionnement
Conception de PCB et la production: Fournir un service à guichet unique de la conception PCB au placement et à l'assemblage SMT.
Approvisionnement des composants: Réduire les coûts grâce à l'approvisionnement à grande échelle et gérer le réseau de fournisseurs.
Contrôle de qualité: Implémenter ISO 9001, IATF 16949 (électronique automobile) et d'autres normes de certification pour assurer le rendement des produits.
2.Logistique et distribution
Service de messagerie International Express (EMS): Par exemple, Couvoirs en Chine Post EMS 200+ pays et régions, Fournit des services tels que le prix assuré, Déclaration des douanes au nom des clients, et exempte la surcharge de carburant pour certaines itinéraires.
Entreposage intelligent: Utilisation de la technologie RFID pour réaliser un suivi complet des colis et optimiser l'efficacité du tri (par exemple. Pékin Post EMS raccourcit le temps de distribution par 30% Grâce à l'équipement automatisé).
3.Services à valeur ajoutée
Service après-vente: Collection de paiement d'assistance, 24-Mécanisme de rétroaction du service à la clientèle en ligne d'heure et des ventes après-vente.
Solutions personnalisées: Ajustez la ligne de production en fonction des clients’ besoins et soutenir les petits lot, Fabrication flexible à plusieurs valeurs.
Fabrication de partenaire EMS
Le mode de travail de l'EMS
Dans l'EMS (Services de fabrication électronique) modèle, Un partenariat stratégique est établi entre le fabricant d'équipements d'origine (Socle) et le fournisseur de services EMS. L'OEM est généralement responsable de la conception du produit et du développement des indicateurs de performance clés (KPI) pour le cycle de conception, tandis que le partenaire EMS est responsable de l'exécution de l'ensemble du processus de production. Ce processus, à partir de l'approvisionnement des composants et Fabrication de PCB à l'assemblage de produits finis et aux tests fonctionnels, est terminé par l'EMS. Le contenu du service peut être ajusté de manière flexible en fonction de différents projets, Couvrant du prototypage à petit volume à la production de masse à grande échelle.
Les principaux aspects des services EMS comprennent:
Fabrication de PCB: Produire des circuits imprimés (PCBS), qui sont les principaux éléments constitutifs des appareils électroniques, Pour fournir la base de connexion électrique pour les produits.
Approvisionnement des composants: Approvisionnement des composants électroniques de haute qualité auprès des fournisseurs réputés pour garantir les performances et la cohérence du produit.
Assemblage PCBA: Soudeur de précision des composants électroniques sur les cartes de circuits imprimées à l'aide de méthodes telles que SMT (Technologie de montage de surface) et tht (Grâce à la technologie des trous).
Prototypage et test: Construire des prototypes de produits et effectuer des tests complets pour vérifier l'intégrité fonctionnelle et la fiabilité à long terme.
Assemblage complet: Effectue la «construction de la boîte», C'est-à-dire, intégrer le PCBA avec le logement, boutons, câbles, et d'autres composants pour former le produit final.
Gestion de la chaîne d'approvisionnement: Gérer l'intégralité de la chaîne logistique de l'approvisionnement en matières premières à la livraison de produits finis pour assurer l'équilibre optimal du délai et du coût.
Conception pour la fabrication (DFM) Optimisation: Collaborez avec les OEM pendant la phase de conception du produit pour optimiser la structure pour améliorer l'efficacité de la production et réduire les coûts de fabrication.
Industries qui peuvent choisir la fabrication de partenaires EMS
La fabrication de partenaires EMS est universellement applicable et bénéfique pour les entreprises de toutes tailles et dans une variété d'industries. Des startups aux géants multinationaux, Toute entreprise peut utiliser EMS pour optimiser ses processus de fabrication.
Socle: Fabricants d'équipements d'origine (OEMS) qui conçoivent et vendent leurs propres fournisseurs EMS de produits de marque tels que PCI permettent aux OEM de se concentrer sur les compétences de base telles que le développement de produits et le marketing, tout en assurant une fabrication de haute qualité.
ODM: Les fabricants de conception d'origine des produits de conception et de fabrication qui sont ensuite étiquetés et vendus par d'autres sociétés..
Startups et petites entreprises:Ces entités n'ont souvent pas les ressources pour constituer des capacités de fabrication internes..
Institutions de recherche: Les organisations axées sur la recherche peuvent bénéficier de l'expertise EMS pour fabriquer des équipements spécialisés pour les progrès technologiques.
Résumé
Les partenaires EMS aident les marques à réaliser des opérations «à la lumière des actifs» grâce à une division spécialisée du travail, Tout en devenant un lien indispensable dans la chaîne de l'industrie électronique en tirant parti de la technologie, Coût et avantages du réseau mondial. Pour les entreprises qui ont besoin de se développer rapidement ou de se concentrer sur l'innovation, Le choix du partenaire EMS est une stratégie clé pour améliorer la compétitivité.
Choisissez LeadSintec comme partenaire de fabrication de PCB flexible
/dans Nouvelles de l'entreprise/par Personnel administratifThe manufacturing of flexible printed circuit boards (FPCS) is a multidisciplinary field that integrates material science, precision machining and electronic engineering. Its technological evolution has directly promoted innovation in industries such as consumer electronics, équipement médical, et électronique automobile. Leadsintec is a professional flexible Fabrication de PCB and assembly company. We have a professional design and processing team to meet all customer needs. Let’s take a look at our manufacturing capabilities.
Exceptional Flexible PCB Manufacturing Capability
Layer Configurations
LSTPCB offers a wide range of flexible circuit board configurations to meet the diverse demands of various industries for circuit complexity and mechanical flexibility:
-
Single-Layer Flexible PCBs: Our single-sided flexible circuits feature a conductive copper layer on a high-performance flexible dielectric substrate. They are optimized for simple designs, offering excellent bendability and cost efficiency. These lightweight structures ensure electrical reliability while enabling dynamic flexing.
-
Double-Layer Flexible PCBs: This configuration includes two conductive copper layers separated by a polyimide insulating layer, typically interconnected through plated through holes. It allows for increased circuit density without compromising flexibility.
-
Multi-Layer Flexible PCBs: We produce 4-layer flexible PCBs tailored for highly integrated systems such as wearable devices, écrans flexibles, medical sensing modules, and advanced automotive electronics.
-
Advanced Multi-Layer Designs: LSTPCB can manufacture 6-layer flexible circuits that balance precision signal routing with effective power distribution, ideal for high-performance systems with limited space. Our 8-layer flexible PCBs represent the leading edge of flex circuit technology, offering superior multifunctional integration and compact packaging.
-
PCB-flex rigide: As a UL-certified rigid-flex PCB manufacturer, LSTPCB offers hybrid structures with up to 32 rigid layers and 12 flexible layers. These boards combine the stability of rigid substrates with the bendability of flex layers, making them ideal for complex 3D interconnect designs in aerospace, défense, and premium consumer electronics.
Technical Advantages
Our expertise in carte PCB flexible manufacturing encompasses the following core capabilities:
-
Fine-Line Processing: We achieve line/space widths as narrow as 25μm on multi-layer flexible materials, with layer-to-layer alignment accuracy within ±50μm.
-
Premium Material Selection: We use high-grade materials such as polyimide and specialty thermoplastics to ensure stability and durability in a wide range of applications.
-
Bend Reliability Design: We account for critical minimum bend radius requirements to enhance product lifespan under dynamic bending conditions.
-
Custom Stack-Up Solutions: From basic single-layer to complex 8-layer configurations, we provide optimized stack-ups tailored to specific application needs.
-
Diverse Surface Finishes: We offer a variety of surface treatments including ENIG (Or par immersion au nickel autocatalytique), immersion tin, and others to protect exposed copper and enhance solderability.
Nos capacités de fabrication
| Article | Description | |
| Couche | Flexible board: 1-12Couches Flex-Rigid Board: 2-32Couches |
|
| Matériel |
PI, ANIMAL DE COMPAGNIE, STYLO, FR-4,dupont |
|
| Stiffeners |
FR4, Aluminium, Polyimide, Acier inoxydable |
|
| Final Thickness | Flexible board: 0.002″ – 0.1″ (0.05-2.5MM) Flexible-rigid board: 0.0024″ – 0.16″ (0.06-4.0MM) |
|
| Traitement de surface | Sans plomb: ENG Gold; OSP, Argent à immersion, Boîte à immersion | |
| Max. / Min Board Size | Min.: 0.2″x0.3″ Max: 20.5″x13″ | |
| Min Trace Largeur / Min Clearance |
Inner: 0.5oz: 4/4mil Outer: 1/3oz-0.5oz: 4/4mil 1oz: 5/5mil 1oz: 5/5mil 2oz: 5/7mil 2oz: 5/7mil |
|
| Min Hole Ring | Inner: 0.5oz: 4mil Outer: 1/3oz-0.5oz: 4mil 1oz: 5mil 1oz: 5mil 2oz: 7mil 2oz: 7mil |
|
| Épaisseur de cuivre | 1/3oz – 2oz | |
| Max. / Min Insulation Thickness | 2mil/0.5mil (50um/12.7um) | |
| Min Hole Size and Tolerance | Min hole: 8mil Tolerance: PTH±3mil, NPTH±2mil |
|
| Min Slot | 24mil x 35mil (0.6×0.9mm) | |
| Solder Mask Alignment Tolerance | ±3mil | |
| Silkscreen Alignment Tolerance | ±6mil | |
| Silkscreen Line Width | 5mil | |
| Gold Plating | Nickel: 100u” – 200u” | Gold: 1u”-4u” |
| Immersion Nickel / Gold | Nickel: 100u” – 200u” | Gold: 1u”-5u” |
| Argent immergé | Silver: 6u” – 12u” | |
| OSP | Film: 8u” – 20u” | |
| Test Voltage | Testing Fixture: 50-300V | |
| Profile Tolerance of Punch | Accurate mould: ±2mil | |
| Ordinary mould: ±4 mil | ||
| Knife mould: ±8mil | ||
| Hand-Cut: ±15mil | ||
Flexible PCB Manufacturing Process
At Leadsintec, the flexible Processus de fabrication de PCB consists of a series of sophisticated and tightly controlled steps, forming a precise production chain from raw materials to finished products:
1. Substrate Preparation
-
Sélection des matériaux: Polyimide (PI) is the primary substrate material due to its excellent heat resistance (up to 400°C), chemical stability, and mechanical flexibility—suitable for most application scenarios. Liquid Crystal Polymer (PCL), with its low dielectric loss (Dk = 2.85 at 1GHz), is preferred for high-frequency 5G applications.
-
Traitement de surface: Plasma cleaning or chemical etching is used to increase the surface energy of the substrate, improving copper foil adhesion.
2. Copper Lamination & Pattern Transfer
-
Dépôt de cuivre: A sputtering followed by electroplating process is used to create an ultra-thin seed copper layer (épaisseur <1µm), eliminating the thickness limitations of traditional lamination methods.
-
Photolithography: Dry film photoresist is applied, and high-precision pattern transfer is achieved using Laser Direct Imaging (LDI), enabling 50μm line width/spacing. After development, the resist protects desired copper areas.
3. Gravure & Laminage
-
Chemical Etching: Acidic cupric chloride solution removes unprotected copper. Etch rate control is critical, as polyimide and FR-4 materials have up to 15% difference in etching behavior, requiring compensation to avoid undercutting.
-
Multilayer Lamination: Automated hot presses are used to bond layers under controlled temperature (180–220°C) and pressure (30–50 kg/cm²) gradients, effectively managing CTE (Coefficient of Thermal Expansion) mismatches.
4. Forage & Métallisation
-
Forage au laser: Ultraviolet (UV) lasers (355nm wavelength) are used to create 50μm microvias without inducing mechanical stress, as seen with mechanical drilling.
-
Via Metallization: Electroless copper plating forms a 0.5–1μm conductive layer, ensuring reliable interlayer electrical connections.
5. Finition de surface & Protection
-
Accepter (Electroless Nickel/Immersion Gold): Provides excellent solderability and corrosion resistance. Thickness is precisely controlled: Ni 3–6μm / Au 0.05–0.1μm.
-
Coverlay Application: Heat-laminated polyimide coverlays (25μm with adhesive) are applied, with laser window opening precision reaching ±25μm.
6. Profilage & Essai
-
Laser Cutting: UV laser systems ensure clean, burr-free cutting of complex board outlines.
-
Tests de fiabilité: Includes dynamic bend testing (100,000 cycles from 0° to 180°), thermal shock cycles (-40°C to 125°C, 1000 cycles), and signal integrity testing (TDR impedance control within ±10%).
Cross-Industry Applications
Leadsintec’s flexible printed circuit boards (Flex PCBs) are driving innovation across a wide range of industries:
-
Dispositifs médicaux: Implantable electronics, wearable health monitors, diagnostic systems
-
Électronique automobile: Engine control units, dashboard displays, sensor networks
-
Électronique grand public: Téléphones intelligents, caméras numériques, technologie portable
-
Aérospatial & Aviation: Satellite systems, aircraft control panels, navigation instruments
-
Automatisation industrielle: Control systems, sensor modules, interface boards
-
Télécommunications: Networking equipment, mobile devices, transmission systems
Advantages of Leadsintec Flex PCBs
Choosing Leadsintec for your flexible circuit needs brings a host of clear benefits:
-
Space and Weight Savings
By eliminating the need for traditional connectors and ribbon cables, our flexible and rigid-flex PCBs dramatically reduce overall system size and weight. This allows for more compact, efficient internal layouts—ideal for devices where slim and lightweight design is critical. -
Fiabilité accrue
Flexible circuits minimize physical interconnects between components, lowering the risk of failure points. This enhances the durability and reliability of the system, while also allowing for easier modifications to adapt to evolving design requirements. -
Superior Design Freedom
With advanced 3D routing capabilities, circuits can be precisely shaped to fit non-standard geometries. Shorter signal paths and better impedance control are achieved, making our solutions ideal for spatially constrained and complex structures. -
Outstanding Thermal Management
Compared to traditional rigid boards, our flexible PCBs offer improved heat dissipation, helping maintain thermal stability under continuous operation. -
Exceptional Vibration Resistance
The inherent flexibility of our materials reduces mechanical stress on solder joints, ensuring excellent durability and performance even in high-vibration or harsh operating environments. -
Cost-Effective Performance
While initial costs may vary for highly customized or low-volume designs, our mature production processes and scalable manufacturing capabilities ensure highly competitive overall value for our clients.
Quality Assurance and Certifications
At Leadsintec, we adhere to rigorous quality control protocols throughout the entire manufacturing process:
-
UL-Certified Production for Both Rigid and Flexible PCBs
-
ISO-Compliant Quality Management System
-
Comprehensive Environmental and Reliability Testing
-
Strict Electrical Performance Validation
-
Customer-Centric Engineering Approach
At Leadsintec, we understand that flexibility and strong client relationships are just as critical as advanced engineering. We offer premium, customized engineering and manufacturing services tailored to specific requirements—from rapid prototyping of single units to high-volume production runs.
Conclusion
With nearly two decades of expertise in flexible PCB manufacturing, Leadsintec delivers world-class flexible circuit solutions that combine innovative design, precision engineering, and exceptional reliability. Our comprehensive capabilities—from basic single-layer circuits to advanced multilayer and rigid-flex configurations—empower clients across industries to push the boundaries of electronic product development.
Partner with Leadsintec for your flexible PCB needs and experience the perfect balance of cutting-edge technology and customer satisfaction.
Coordonnées
:4e-6e étages, Parc technologique Xingyuan, Route de l'aube, Gushu, bourg de Xixiang, District de Bao'an, Shenzhen, Province du Guangdong, Chine
:A3 et Zone A3, Zone industrielle de la trêve de Phung Nenh (Parc industriel NAM Giang), Ville de Yen vietnamien, Bac Giang Province, Vietnam
WhatsApp:+86 15817390087
: +86-15817390087
: +86-755-23108895
: +86-755-29129721
: Victor Zhang
:sales@leadsintec.com
Derniers produits
- Module Smart Video Doorbell PCB développé basé sur la puce ESP32-S309/10/2025 - 02:53
- Solution de développement de l'armoire de médecine intelligente ESP3209/04/2025 - 02:33
- Banana PI BPI-M5 Pro Open Source Open Source Organe Computer PCB Module06/13/2025 - 03:04
Blog
Quelles sont les exigences de base pour un dessin d'assemblage PCBA?01/06/2026 - 06:01
Guide d'utilisation de l'ingénierie inverse des PCB01/04/2026 - 03:32
SERVICES
SUIVEZ-NOUS
Traduction
Defini comme langue par défaut






