Entries by

Functions and Differences of Tin Paste and Solder Paste

In the process of Montagem da PCB, tin paste and solder paste are essential auxiliary materials, each serving different functions and roles. This article will introduce the specific roles and differences of tin paste and solder paste in PCB assembly.

What is Tin Paste?

Tin paste is a new type of soldering material, mainly composed of solder powder, fluxo, surface-active agents, thixotropic agents, and other additives mixed into a paste. It is primarily used in the SMT (Tecnologia de montagem de superfície) industry for soldering resistors, capacitores, ICS, and other electronic components onto PCB surfaces. The composition and properties of tin paste make it indispensable in Assembléia SMT. It is applied through stencil printing on the PCB surface, and during reflow soldering, it melts to form alloy connections between the component leads or terminals and the PCB pads, ensuring reliable connections.

Functions of Tin Paste

Tin paste plays a crucial role in electronic manufacturing, especially in SMT. Here are its main functions:

  1. Electrical Connection: The primary function of tin paste is to form electrical connections between the leads or terminals of electronic components (such as chips, resistores, capacitores) and the PCB pads after melting during heating. This is fundamental to the functioning of electronic devices.

  2. Mechanical Fixation: In addition to electrical connections, tin paste also provides mechanical fixation. Once melted and cooled, it forms solid solder joints that securely hold electronic components in place on the PCB, preventing movement or detachment during use.

  3. Heat Dissipation: The metal connections formed by solder joints have good thermal conductivity, helping to dissipate the heat generated by electronic components during operation. This enhances the stability and reliability of electronic devices.

  4. Compensation for Component Placement Errors: In the SMT process, there might be slight errors in the placement and angle of components. The flow and wetting properties of tin paste can compensate for these errors to a certain extent, ensuring accurate formation of solder joints.

  5. Oxidation and Corrosion Resistance: The flux in tin paste removes oxides and impurities from metal surfaces, preventing further oxidation and corrosion during soldering. This ensures the quality and reliability of the soldering process.

  6. Increased Production Efficiency: Through automated equipment and precise application techniques, tin paste enables efficient and accurate SMT SOLDA, thereby improving production efficiency and product quality.

What is Solder Paste?

Solder paste is a crucial material used in the electronics manufacturing industry, especially in surface mount technology (Smt). It is a homogeneous paste primarily composed of metal alloy powder (typically tin-based alloys such as tin-silver-copper) and flux. The selection and use of solder paste are critical for the success of the SMT process. Different types of solder paste have varying metal alloy compositions, flux types, and melting points to suit different soldering needs and process conditions. Adicionalmente, the storage, use, and management of solder paste must adhere to strict standards to ensure its quality, estabilidade, and consistency.

Functions of Solder Paste

Solder paste plays a vital role in the electronics manufacturing industry, particularly in SMT. Here are its primary functions:

  1. Electrical Connection: The main function of solder paste is to melt during the heating process and form an electrical connection between the leads or terminals of electronic components and the pads on the printed circuit board (PCB). This ensures the smooth transmission of current and signals between various electronic components, which is fundamental to the functionality of electronic devices.

  2. Mechanical Fixation: After cooling and solidifying, solder paste provides mechanical fixation, securing electronic components to the PCB and preventing them from moving or detaching during use. This mechanical stability is crucial for the reliability and stability of electronic devices.

  3. Thermal Conduction: The metal connections formed by solder joints have excellent thermal conductivity. They effectively transfer heat generated by electronic components to the PCB and dissipate it through heatsinks or other cooling mechanisms, maintaining the components within an optimal working temperature range.

  4. Compensation for Placement Errors: Due to possible errors in the placement position and angle of components, the flow and wetting properties of solder paste can compensate for these errors to a certain extent, ensuring accurate and reliable formation of solder joints.

  5. Removal of Oxides and Impurities: The flux in solder paste removes oxides and impurities from metal surfaces, ensuring clean and uncontaminated metal surfaces during the soldering process, thereby improving the quality and reliability of the solder joints.

  6. Increased Production Efficiency: Precise application of solder paste and automated soldering techniques can significantly enhance the production efficiency of the SMT process, reduce production costs, and improve the quality and reliability of the final products.

By understanding the roles and differences of tin paste and solder paste, manufacturers can optimize their PCB assembly processes, ensuring high-quality and reliable electronic products.

Differences Between Solder Paste and Solder Flux

Solder paste and solder flux differ significantly in several aspects. Below is a detailed breakdown of their differences:

  1. Composition:

    • Pasta de solda: Composed mainly of tin, prata, cobre, and other auxiliary materials. It is a soft, malleable soldering material.
    • Fluxo de solda: A homogeneous mixture made of alloy solder powder, paste-like flux, and various additives. Its main components are flux and a base material, with fluxes being either organic or inorganic.
  2. Usage:

    • Pasta de solda: Primarily used in surface mount technology (Smt) and printed circuit board (PCB) fabricação. Before soldering, solder paste is applied to the PCB pads. Through heating, it melts, creating a connection between electronic components and the PCB. Solder paste ensures a uniform soldering contact surface on the PCB, improving the quality and reliability of the solder joints.
    • Fluxo de solda: Mainly used in circuit board manufacturing and repair to fix electronic components and connect points between circuits. Its good flexibility allows it to cool quickly after heating, ensuring the quality of the soldering.
  3. Performance and Application Scenarios:

    • Pasta de solda: Plays a critical role in SMT soldering processes, including placement and reflow soldering. It reduces oxidation of the solder, ensuring the stability of the solder joints.
    • Fluxo de solda: Due to its homogeneous and stable mixture characteristics, it can initially adhere electronic components to their designated positions at room temperature and achieve interconnection between components and pads when heated.

Resumindo, solder paste and solder flux differ in composition, usage, performance, and application scenarios. Solder paste is mainly used in SMT and Manufatura de PCB, while solder flux is more widely applied in circuit board manufacturing and repair. The choice between the two depends on specific soldering needs and process requirements.

The application of 3D printing technology in PCB manufacturing

Na indústria eletrônica, the design and production of PCBs (Placas de Circuito Impresso) is a complex and crucial process. Traditional methods often struggle to keep pace with the rapidly changing market demands and technological advancements. No entanto, with the development of 3D impressão tecnologia, this is beginning to change. 3D printed PCBs offer greater flexibility in design and production, enabling optimal performance and efficiency. This article explores the application of 3D printing technology in Manufatura de PCB.

What is 3D Printing?

3D impressão, Também conhecido como fabricação aditiva, is a type of rapid prototyping technology. It is a technique that constructs objects by adding material layer by layer based on a digital 3D model. Using powdered metal, plastic, or other bonding materials, 3D printers can create complex shapes and structures.

Tipicamente, 3D printing is carried out using digital material printers. Initially used in mold manufacturing and industrial design to create models, it has gradually expanded into direct manufacturing of products, including components made with this technology. 3D printing finds applications in various industries such as jewelry, footwear, industrial design, architecture, engineering and construction (AEC), Automotivo, aeroespacial, dental and medical, educação, geographic information systems, civil engineering, firearms, e mais.

What is a 3D Print PCB Board?

3D print PCB is circuit board manufacturing using 3D printing technology. It uses a 3D printer instead of traditional manufacturing methods of etching copper traces on a flat substrate.

Let’s break down the 3D Print PCB in a more simple way of understanding:

Imagine a flat, rigid board that has copper traces etched on it. There are types of traditional circuit boards that connect the electronic components.

Whereas 3D printing is the technology that uses 3D objects by layering the materials on each other. Por isso, a 3D Printed PCB uses a 3D printer with special conductive materials like filaments with metal particles or inks that print the circuit directly on the board. 3D-printed PCB boards are a new and exciting technology. It offers various benefits as compared to traditional methods. Por exemplo, it provides design freedom and faster prototypes for the modern electronics world.

Core Technologies of 3D Printed Circuit Boards

  1. Conductive Materials:

    One of the core technologies for 3D printed circuit boards is the selection and development of conductive materials. Researchers have successfully developed materials with conductive properties, such as conductive polymers and nanoparticles. These materials can be used as wires or circuit elements during the 3D printing process.

  2. Printing Techniques:

    The printing techniques used for 3D printed circuit boards typically include inkjet printing, extrusion printing, and laser sintering. These techniques allow for the precise deposition, accumulation, and curing of conductive materials, thereby constructing the structure and components of the circuit board layer by layer.

  3. Design Software and Model Creation:

    Professional design software is essential for circuit layout and model creation in 3D printed circuit boards. This software converts the designed circuit layout into instructions that the printer can understand and generates the model files necessary for printing.

  4. Printing Parameter Optimization:

    The success of 3D printed circuit boards also depends on the optimization of printing parameters. This includes adjusting key parameters such as printing speed, temperature control, and layer height to ensure print quality and circuit performance.

Advantages and Disadvantages of 3D Printed Circuit Boards

Compared to traditionally manufactured circuit boards, 3D printed PCBs offer significant advantages but also have practical limitations. Portanto, this technology may not yet be ideal for all purposes.

Vantagens

  1. Custo-efetividade: While some PCB 3D printers are expensive, they can quickly provide a return on investment. 3D printed PCBs use fewer materials and eliminate transportation and outsourcing costs, significantly reducing the cost of circuit prototyping.

  2. Production Speed: With 3D printers, PCB production time is measured in hours. They can expedite the entire process, including circuit design, prototipagem, iteration, final production, and market launch.

  3. Design Freedom: PCBs produced with 3D printers can be any shape and can even be printed with flexible materials. This increased design freedom allows engineers to focus on developing lighter, smaller, and more efficient products.

  4. Reduced Waste: Traditional manufacturing methods generate a lot of waste. 3D printed PCBs can make circuits more compact and complex in shape, saving materials.

  5. On-Demand Production: 3D printing enables the production of circuit boards as needed, without maintaining large inventories. It also eliminates the risk of supply chain disruptions by not relying on large orders from third-party manufacturers.

  6. High Precision: 3D printers can achieve higher precision in PCB production compared to traditional methods. Some printers can even place components, further reducing the possibility of human errors during production.

  7. More Layers: When using additive manufacturing systems for multilayer PCBs, the geometry of your circuit board can be more complex.

Desvantagens

  1. Limited Materials: As a relatively new technology, 3D PCB printing does not yet offer a wide range of materials. Many printers can only use one or two materials provided by the manufacturer, increasing costs and limiting design options.

  2. Lower Conductivity: Despite ongoing advancements in PCB 3D printing, the performance of some conductive printing materials is not yet on par with traditional materials.

  3. Limited Board Size: 3D printers can only produce PCBs within the dimensions of their print chambers. For many applications, this is not an issue, but many PCB 3D printers have relatively small print chambers, making them unsuitable for producing large circuit boards.

  4. Lack of Options: Similar to materials, few companies currently produce commercial PCB 3D printers. As the technology matures, this is likely to improve, but for now, there is not a wide range of options available.

Applications of 3D Printed Circuit Boards

3D printed PCBs have found widespread applications across various industries, from education to advanced aerospace equipment. Here are some key areas of application:

  1. Prototyping and Design Verification: 3D printing technology allows for the rapid production of PCB prototypes, enabling quick iteration and design validation. This is crucial for circuit design and optimization, significantly enhancing design efficiency.

  2. Custom PCB Fabricação: 3D printing can create custom PCBs tailored to specific device requirements. This customization can enhance circuit layout compactness, reduce board size and weight, and improve overall performance.

  3. Electronics in Aerospace Manufacturing: In the aerospace sector, 3D printing is used for prototyping, part production, and model making. Engineers can quickly produce complex prototypes to validate the feasibility and precision of their designs. This technology also improves product quality and performance while reducing manufacturing costs.

  4. Medical Industry: 3D printed PCBs are widely used in the medical field for manufacturing medical devices, aiding surgical procedures, and producing artificial organs. Por exemplo, 3D printing can create patient-specific models to assist surgeons in planning and simulating operations. It can also manufacture artificial organs like livers and hearts, addressing organ transplant challenges.

  5. Manufacturing Industry: In general manufacturing, 3D printed PCBs offer faster production speeds and broader applications, enabling the production of more complex circuits at significantly reduced costs. Specialized 3D printers for PCBs can manufacture boards faster than traditional methods, and even regular desktop FDM 3D printers with conductive filament can be used for production.

Conclusão

3D printed circuit boards are poised to revolutionize the world in a manner similar to the impact of integrated circuits, which triggered a technological revolution. Investing in this future technology is essential to fully automate and harness the potential of 3D printed PCBs.

Características e aplicações de PCBs de alumínio

Aluminum PCBs are a type of metal-based copper-clad laminate known for their excellent heat dissipation properties. A typical single-sided aluminum PCB consists of three layers: the circuit layer (copper foil), the insulation layer, and the metal base layer. For high-end applications, double-sided designs are also available, featuring a structure of circuit layer, insulation layer, aluminum base, insulation layer, and another circuit layer. In rare cases, multilayer boards are used, combining standard multilayer boards with insulation layers and aluminum bases.

Advantages of Aluminum PCBs

  1. Eco-Friendly: Aluminum is non-toxic and recyclable. Its ease of assembly also contributes to energy savings. For PCB suppliers, using aluminum supports environmental sustainability.

  2. Heat Dissipation: High temperatures can severely damage electronic components, so using materials that aid in heat dissipation is prudent. Aluminum effectively transfers heat away from critical components, minimizing its detrimental impact on the circuit board.

  3. Enhanced Durability: Aluminum provides a level of strength and durability that ceramic or fiberglass substrates cannot. It serves as a robust base material, reducing the likelihood of accidental damage during manufacturing, handling, and everyday use.

  4. Lightweight: Despite its remarkable durability, aluminum is surprisingly lightweight. It adds strength and resilience without adding significant weight.

Applications of Aluminum PCBs

  1. LED Lighting: The primary application of aluminum PCBs is in LED lighting. LEDs generate significant heat during operation, and the excellent heat dissipation properties of aluminum PCBs ensure the stable functioning of LEDs, thereby enhancing the lifespan and reliability of the lighting fixtures.

  2. Automotive Electronics: With the increasing degree of automotive electrification, the number and density of electronic components in vehicles are rising. The lightweight nature, excellent thermal management, and electrical performance of aluminum PCBs make them an ideal choice for automotive electronics.

  3. Renewable Energy: Aluminum PCBs play a crucial role in renewable energy sectors like solar and wind power. Por exemplo, solar panels need to efficiently convert solar energy into electrical energy, and the superior heat dissipation of aluminum PCBs helps maintain the stable operation of solar cells.

  4. Power Electronics: In power electronic devices such as inverters and converters, the use of aluminum PCBs ensures stable operation under high power densities.

  5. Industrial Automation: In industrial automation control systems, the high reliability, estabilidade, and excellent electrical performance of aluminum PCBs make them the preferred material for critical components.

Applications of Aluminum PCBs

Manufacturing Process of Aluminum PCBs

  1. Mechanical Processing:

    • Perfuração: While aluminum PCBs can be drilled, any burrs on the edges of the holes are unacceptable as they can affect the withstand voltage test.
    • Milling the Outline: Milling the outline is challenging. Punching the outline requires high-quality molds, which is a critical aspect of aluminum PCB production.
    • Punching: After punching the outline, the edges must be very neat, free of any burrs, and the solder mask layer on the edges should remain intact. Punching involves intricate techniques such as using a blanking die, ensuring the board does not warp more than 0.5% after the process.
  2. Avoid Scratches on the Aluminum Base:

    • The aluminum base must remain untouched throughout the process to prevent discoloration or blackening due to chemical exposure or handling. Any damage to the aluminum base is unacceptable, as re-polishing is often not permitted by customers. Protective measures, like passivation or applying protective films before and after hot air leveling (Sangrar), are essential to prevent damage.
  3. High Voltage Testing:

    • Aluminum PCBs for communication power supplies require 100% high voltage testing. Customers may specify either DC or AC testing, with voltages typically around 1500V or 1600V for durations of 5 para 10 segundos. Any dirt, burrs on holes or edges, jagged lines, or damage to the insulating layer can cause fires, leakage, or breakdowns during these tests. Issues such as delamination or bubbling during high voltage testing are grounds for rejection.

Aluminum PCB Manufacturing Specifications

  1. Espessura da folha de cobre:

    • Aluminum PCBs are often used for power devices with high power densities, so the copper foil is typically thicker. For copper foil thicknesses of 3oz or more, the etching process requires precise line width compensation in the engineering design to ensure that the etched line width remains within tolerance.
  2. Protection of the Aluminum Base:

    • During the Manufatura de PCB processo, the aluminum base must be protected with a protective film to prevent damage from chemical exposure, which can tarnish the surface. This protective film is prone to damage, requiring careful handling and placement of the boards in racks throughout the process.
  3. Milling Tools:

    • Milling tools used for fiberglass boards (FR-4) have lower hardness, whereas those for aluminum PCBs require higher hardness. The milling speed for fiberglass boards is relatively high, but it must be reduced by at least two-thirds when milling aluminum PCBs.
  4. Cooling During Milling:

    • For milling fiberglass boards, the machine’s built-in cooling system is typically sufficient. No entanto, when milling aluminum PCBs, additional cooling, such as applying alcohol to the milling bit, is necessary to dissipate heat effectively.

Diferença entre PCB de alta velocidade e PCB de alta frequência.

PCB, ou placa de circuito impresso, é um componente indispensável em produtos eletrônicos. PCBs diferentes usados ​​em várias aplicações têm características e vantagens distintas. Entre eles, PCBs de alta frequência e PCBs de alta velocidade são dois tipos especiais, cada um com aplicações e benefícios exclusivos. Neste artigo, Introduziremos as diferenças e características de PCBs de alta velocidade e PCBs de alta frequência.

O que são PCBs de alta velocidade?

PCBs de alta velocidade são placas de circuito impresso projetadas e fabricadas, considerando fatores como velocidade de transmissão de sinal, distância de transmissão, e integridade do sinal. Eles são normalmente usados ​​em aplicações que exigem alta frequência, de alta velocidade, e transmissão de dados de alta precisão, como equipamento de comunicação, hardware do computador, e dispositivos médicos.

O que são PCBs de alta frequência?

PCBs de alta frequência são projetados especificamente para lidar com sinais de alta frequência. Seu design, fabricação, e a seleção de materiais são otimizados para as características da transmissão de sinal de alta frequência para garantir a estabilidade, integridade, e baixa perda durante a transmissão. PCBs de alta frequência são comumente usados ​​na comunicação sem fio, Comunicação de microondas, comunicação por satélite, sistemas de radar, e outros campos onde as altas demandas são colocadas na velocidade de transmissão de sinal e na estabilidade. Portanto, O desempenho de PCBs de alta frequência afeta diretamente o desempenho geral do sistema.

As diferenças entre PCBs de alta velocidade e PCBs de alta frequência:

  1. Aplicações diferentes:

PCBs de alta frequência: Usado principalmente em aplicações como comunicação sem fio e sistemas de radar que requerem transmissão de sinais de alta frequência, com altas demandas por fidelidade de sinal e estabilidade.

PCBs de alta frequência de alta velocidade: Comumente encontrado em placas -mãe de computador, dispositivos de rede, etc., Suportando transmissão e processamento de dados de alta velocidade para garantir a integridade do sinal durante a transmissão no PCB, Evitando distorção e interferência do sinal.

  1. Diferentes materiais utilizados:

PCBs de alta frequência: Utilize substratos feitos de vários materiais constantes dielétricos, como fibra de vidro e seus derivados, conhecido por baixa perda dielétrica e propriedades elétricas estáveis.

PCBs de alta frequência de alta velocidade: Empregar materiais com baixas constantes dielétricas para garantir a velocidade de transmissão do sinal, enquanto também se concentra na estabilidade dielétrica e no desempenho da absorção.

  1. Diferentes requisitos de design:

PCBs de alta frequência: As considerações de design incluem fatores de desempenho de transmissão de sinal, como a interface de diafonia, atenuação, harmônicos, bem como fatores como a espessura da placa, pressão do substrato, e precisão.

PCBs de alta frequência de alta velocidade: O design se concentra nas características das linhas de transmissão, impedância, Equilíbrio de linhas de transmissão diferencial, Integridade do sinal da porta, Crosstalk, e medidas anti-interferência para garantir a transmissão de sinal estável e rápida.

  1. Diferenças nos processos de fabricação:

PCBs de alta frequência: Requer controle rigoroso da perda de circuito, radiação eletromagnética, etc., usando materiais e processos de alta qualidade, como seleção de material especial, largura de linha fina e espaçamento, blindagem eletromagnética, etc..

PCBs de alta frequência de alta velocidade: Processos de fabricação envolvem design e técnicas complexas para garantir uma rápida e estável transmissão de sinal, incluindo roteamento, layout da camada de sinal, Design de aterramento, Análise de integridade do sinal, etc..

  1. Diferenças no teste e validação:

PCBs de alta frequência requerem equipamentos de teste especializados para verificar a integridade do sinal e a correspondência de impedância em vários intervalos de frequência. PCBs de alta velocidade requerem o uso de equipamentos avançados para testes extensivos de integridade de sinal para validar o desempenho a altas taxas de dados. O teste de PCBs multicamadas se concentra na funcionalidade e desempenho do circuito geral.

Conclusão

Com a evolução contínua da tecnologia de comunicação 5G, Os requisitos para placas de PCB em produtos de alta frequência estão aumentando. Por um lado, A transmissão de sinal de alta frequência exige perda dielétrica menor (Df) e constante dielétrica (Dk) Para garantir a transmissão estável de sinal. Por outro lado, À medida que os produtos avançam em direção à miniaturização e padronização, As placas de PCB estão inevitavelmente se movendo em direção às direções de camada alta e até HDI, Colocando maiores demandas na processabilidade do material. Portanto, seja da perspectiva de materiais de alta frequência ou alta velocidade, Éter polifenileno (PPO ou PPE) A resina mostra perspectivas promissoras de desenvolvimento e se tornará uma direção importante para futuros materiais de placa PCB de alta frequência e alta velocidade.

O que é teste de sonda voadora de PCB?

Printed circuit board testing is a critical aspect of Montagem da PCB, allowing us to identify major circuit issues and address them promptly. There are various methods for PCBA teste, including flying probe testing, AOI testing, fixture testing, etc.. This article will delve into the details of flying probe testing for PCBs.

What is Flying Probe Testing?

Flying probe testing is an electronic circuit testing method primarily used for testing printed circuit boards (PCBs). It employs a movable probe system that essentiallyfliesover the PCB, making electrical contact with specific test points on the PCB. Ultimately, it identifies defects and verifies the electrical performance of the circuit. The flying probe testing system consists of several key components, including the probes themselves, test fixtures used to secure the PCB in place, and control software to manage the testing process.

Structural Features of PCB Flying Probe Testing

The flying probe tester is an improvement over traditional bed-of-nails testers, utilizing probes instead of a bed of nails. It features four heads with a total of eight testing probes that can move independently at high speeds on an X-Y mechanism, with a minimum testing gap of 0.2mm. Durante a operação, the unit under test (Uut) is conveyed into the testing machine via belts or other UUT transfer systems, where the probes are then fixed to make contact with test pads and vias on the PCB, thereby testing individual components on the UUT. The testing probes are connected to drivers (signal generators, power supplies, etc.) and sensors (digital multimeters, Contadores de frequência, etc.) via a multiplexing system to test components on the UUT. While one component is being tested, other components on the UUT are electrically shielded by the probes to prevent reading interference. The flying probe tester can detect short circuits, open circuits, and component values. Adicionalmente, a camera is used during flying probe testing to aid in locating missing components and inspecting components with clear directional shapes, such as polarized capacitors.

Flying Probe Testing Capabilities

While flying probe testing can easily detect short circuits and open circuits, equipping them with special drivers enables them to test more complex parameters as well. Advanced probes can simultaneously probe and test both sides of multilayer boards, reducing the time needed for separate single-sided testing. Different architectures of flying probes can be used for various solutions, como:

Signal Integrity Testing: Utilizing Time Domain Reflectometry (TDR) or Time Domain Reflectometer probes along with specialized instruments, various characteristics of PCB traces used for carrying high-speed and high-frequency signals can be tested. This setup typically captures and measures signals in both time and frequency domains to characterize defects in signal paths.

Phase Difference Measurement: Using specially designed probes to send high-frequency signals between reference traces and signal traces, the phase difference between them can be measured. This test eliminates the need for separate isolation testing to measure crosstalk between traces on the PCB.

High Voltage Stress Testing: PCBs may have insulation defects that conventional electrical tests may not detect. The insulation resistance between two traces on a PCB may be high enough to pass conventional resistance testing but still lower than the requirements in specifications. To detect this, high voltage stress testing is required, using a high voltage generator, appropriate probes, and high resistance meters.

Micro Short Circuit Detection: The presence of tiny whiskers can lead to micro short circuits on the PCB. Às vezes, they may burn off during high voltage stress testing, leaving behind carbonized residues on the PCB surface, forming high-resistance conductive paths. Micro short circuit detection probes apply low voltage to check the resistance between two traces on the PCB, gradually increasing the voltage to a level suitable for testing.

Kelvin DC Measurement: This is a highly precise DC measurement technique required for testing BGA and similar densely packed PCB patterns. It involves a force and sense pin in the flying probe. Kelvin connections compensate for losses in the testing probe.

Flying probe testing systems come in different sizes, with the main variable being the number of connectors the system uses. Por exemplo, a tester can have up to 16 connector heads, com 8 on the top and 8 on the bottom of the PCB. Claro, the cost of the system increases proportionally with the number of connectors it utilizes.

Advantages of Flying Probe Testing

Compared to traditional bed-of-nails or ICT fixtures, flying probe testing offers several advantages:

No Fixtures Required:Unlike bed-of-nails fixtures, flying probe testing doesn’t necessitate fixture setup. This saves the cost and time typically required for setting up ICT fixtures. Na verdade, manufacturers can set up flying probes immediately after the PCBs come off the production line, as they have access to Gerber data. Por outro lado, designing and installing ICT fixtures can take weeks.

Short and Fast Program Development: Since netlists and CAD data form the basis for generating flying probe test programs, and there are multiple open-source programs to translate this information, program development time is short and requires minimal setup time. This also means that design changes can be easily integrated.

Process Flexibility: Unlike ICT’s bed-of-nails fixtures, flying probe setups are applicable to any PCB, whereas ICT’s bed-of-nails fixtures are specific to individual PCBs and useless for another. Simple modifications to internal programs are all that’s needed to adapt them to another board.

No Need for Test Points: Since flying probe testing is conducted on bare boards, probes can utilize component pads without the need for additional test points.

Controlled Probe Contact: Flying probes can achieve precise connections at closer intervals compared to bed-of-nails. Por exemplo, high-precision flying probes can achieve testing gaps as small as 5 micrometers, while ICT’s minimum gap is 0.5 millimeters. This makes them highly useful for densely populated circuit boards or for achieving broader coverage on small PCBs.

Variable Testing Solutions and Methods: Flying probe systems can offer more testing solutions than ICT or bed-of-nails. This is possible because with programmable integrated test systems, various types of flying test probes can be utilized.

High Measurement Accuracy: Specific flying probes are employed for different tests, with precise probe positioning and complementary test instruments, ensuring high measurement accuracy.

Quick Feedback: Since flying probe test results can be obtained on-site, transmitting information to the production line can help them quickly make appropriate process adjustments. De forma similar, PCB designers can receive rapid feedback during prototype design, enabling them to make necessary changes before production.

How Flying Probe Testing Works

Flying probe testing (FPT) is typically the preferred method for small batch and prototype circuit board testing as well as PCB assembly due to its cost-effectiveness and convenience for these smaller quantities.

The main advantage lies in the ability to complete testing at speeds ranging from a few days to a few hours, depending on the complexity of the circuit board, even for larger quantities, and with high coverage of testing.

Let’s break down its operation into steps:

  1. Creating an FPT Test Program

The design aims to test the entire circuit board and is usually completed using an offline computer with an FTP test program generator application. This typically requires Gerbers, BOMs, and ECAD files. On a machine with a motherboard, define the values of the components to be tested, test points, component formats, offsets, debugging, etc., and ultimately finalize the design of the test program.

  1. Uploading the Program to the FTP Tester

The components of the circuit board to be tested are placed on a conveyor belt within the FTP tester and transported to the area where the probes are operated.

  1. Application of Electrical and Power Test Signals

These tests are conducted at probe points and then readings are taken. This process determines whether specific sections of the PCB meet the expected results (componentes). Any failures or deviations from the established plan and expectations indicate defects within the unit, resulting in a test failure.

Flying probe testing is a crucial technology in the electronics industry, ensuring the quality and functionality of electronic components and systems. These tests utilize specialized equipment to perform various contact and non-contact electrical tests on printed circuit boards (PCBs), printed wiring boards (PWBs), PCB assemblies (PCBAs), individual components, and entire systems. By providing a flexible and efficient method to identify defects and validate performance, flying probe testing has become an essential tool for manufacturers and engineers.

Quais são as cores do PCB?

A cor de uma PCB normalmente se refere à tonalidade da máscara de solda na superfície da placa.. Os pigmentos de coloração da placa PCB são um tipo de resina endurecida, com a resina primária sendo incolor ou quase transparente. Verde, como acontece com outras cores, é conseguido através da adição de pigmentos.

Empregamos serigrafia para aplicar cores no PCB. PCBs vêm em várias cores, como verde, preto, azul, amarelo, roxo, vermelho, e marrom. Alguns fabricantes desenvolveram engenhosamente PCBs em várias cores, como branco e rosa.

Propriedades físicas das cores do PCB

Ao selecionar uma cor PCB, deve-se considerar as propriedades físicas do material PCB. Normalmente composto de fibra de vidro e resina epóxi, Os materiais PCB têm densidades, coeficientes de condutividade térmica, coeficientes de expansão térmica, resistência à tração, e outros atributos físicos que impactam diretamente o desempenho e a confiabilidade. PCBs de cores diferentes podem utilizar processos e materiais de produção variados, exibindo assim propriedades físicas diferentes.

Propriedades Químicas das Cores PCB

Além das propriedades físicas, a cor de um PCB também influencia suas características químicas. Placas PCB passam por aquecimento e tratamentos químicos durante a produção, e PCBs de cores diferentes podem exigir processos químicos distintos. Isso afeta propriedades como temperatura de recozimento, resistência a ácidos e álcalis, e resistência à corrosão. Alguns PCBs coloridos podem empregar processos e materiais de produção mais complexos, resultando em maior resistência à corrosão química.

PCB amarelo

Características de PCBs de cores diferentes

  1. PCB verde

PCBs verdes são a escolha de cor mais popular, aumentando a clareza, fornecendo um contraste nítido com texto branco, melhorando assim a legibilidade. Adicionalmente, o tratamento de superfície de PCBs verdes reflete menos luz, ajudando a reduzir o brilho.

  1. PCB branco

PCBs brancos apresentam uma aparência limpa e organizada em vários ambientes, ganhando popularidade. No entanto, devido à sua tendência a obscurecer traços, PCBs brancos não são a melhor escolha. Ainda, o contraste com a impressão serigráfica preta é notavelmente distinto em PCBs brancos.

  1. PCB amarelo

Os PCBs amarelos atendem rapidamente a diversos requisitos, como estilo, limpeza, e visibilidade. No entanto, uma desvantagem significativa dos PCBs amarelos é seu baixo contraste com traços e impressão em serigrafia.

  1. PCB azul

Os PCBs azuis são considerados placas grossas adequadas para etiquetagem devido ao seu contraste significativo na impressão em serigrafia. Embora não seja tão atraente quanto o verde, preto, ou PCBs brancos, PCBs azuis são preferidos por seu excelente apelo estético. É preferível instalar PCBs azuis em LCDs, pois evitam bordas de contraste nítidas e cores de fundo brilhantes.

  1. PCB vermelho

Devido às suas vantagens, muitos fabricantes de PCB estão interessados ​​em adotar PCBs vermelhos. Os PCB vermelhos oferecem excelente visibilidade e definem claramente o contraste dos traços, aviões, e áreas em branco. A impressão serigráfica parece particularmente elegante contra o pano de fundo de PCBs vermelhos.

  1. PCB preto

PCBs pretos são tão populares quanto PCBs brancos. Ambas as cores produzem baixo contraste, facilitando a rotulagem fácil de componentes críticos. No entanto, as principais desvantagens dos PCBs preto e branco são os pontos focais potenciais e pequenas sombras, dificultando o rastreamento. Portanto, PCBs pretos são inadequados para várias aplicações de alta temperatura, pois podem causar descoloração da impressão serigráfica. Além disso, PCBs pretos são uma mistura de cobalto e carbono, potencialmente resultando em baixa condutividade.

PCB preto

Como as cores do PCB são feitas

A cor de um PCB (Placa de circuito impresso) é conseguido principalmente através da aplicação de uma camada de máscara de solda especial durante o processo de fabricação. Aqui estão as etapas gerais envolvidas na produção de cores de PCB:

  1. Durante o processo de fabricação de um PCB, uma fina camada de folha de cobre é primeiro colocada no substrato, formando a camada condutora do PCB. Se estiver produzindo uma placa dupla-face ou multicamadas, ambos os lados ou múltiplas camadas do substrato PCB serão cobertos com folha de cobre.

  2. Próximo, o padrão de circuito PCB projetado é “impresso” no condutor de metal usando uma técnica chamada transferência subtrativa. Neste processo, toda a superfície é coberta com uma camada de folha de cobre, e o excesso de folha de cobre é removido através de técnicas de gravação para formar o padrão de circuito desejado.

  3. Depois de formar o padrão de circuito, para separar as partes soldadas e não soldadas do PCB durante a soldagem e evitar a oxidação do cobre (superfícies de cobre puro sofrem rapidamente reações de oxidação quando expostas ao ar, e o cobre oxidado torna-se um mau condutor de eletricidade, prejudicando muito o desempenho elétrico de todo o PCB), engenheiros aplicam uma camada de máscara de solda na superfície do PCB. Esta camada de máscara de solda bloqueia o contato entre o cobre e o ar, protegendo a camada de cobre da oxidação.

  4. A cor da máscara de solda pode ser ajustada conforme necessário. Como um texto pequeno precisa ser impresso no PCB, os engenheiros normalmente adicionam várias cores à máscara de solda para criar diferentes cores de PCB. Por exemplo, preto, vermelho, azul, verde escuro, e marrom escuro são cores comuns de PCB.

  5. Depois de aplicar a máscara de solda, uma série de etapas de pós-processamento, como nivelamento de ar quente, fresando o contorno, testes elétricos, inspeção final, etc., são necessários para garantir que a qualidade e o desempenho do PCB atendam aos requisitos.

Por que a maioria dos PCB são verdes agora?

A prevalência de PCBs verdes decorre de vários fatores:

  1. Material de resina epóxi de vidro:

    • Historicamente, verde era a cor padrão para a máscara de solda feita de resina epóxi de vidro, que é comumente usado em Manufatura de PCB. Embora outras cores tenham sido introduzidas, verde continua sendo a escolha preferida.
  2. Contraste com texto impresso em branco:

    • PCBs verdes oferecem simplicidade e eficiência de tempo para trabalhadores de montagem, já que digitalizá-los é simples e rápido devido à familiaridade com a cor. Adicionalmente, verde cria menos cansaço visual durante a digitalização em comparação com outras cores e fornece contraste com texto impresso em branco na placa de circuito.
  3. Aplicações Militares:

    • Os padrões militares têm uma influência significativa na preferência por PCBs verdes. Muitos acreditam que o verde é altamente eficaz para fins militares, levando a uma demanda por PCBs verdes por parte de fornecedores que também atendem outros clientes. Consequentemente, PCBs verdes tornam-se produtos excedentes para fornecedores militares, reforçando ainda mais a sua aceitação.
  4. Taxa de exposição da máscara de solda:

    • Enquanto outras cores como o azul, branco, ou marrom existe, eles podem não oferecer uma taxa de exposição à máscara de solda mais alta em comparação com o verde. Cores mais escuras tendem a ter maior deposição de pigmento, resultando em máscaras de solda mais escuras. Máscaras de solda branca e preta têm altas taxas de exposição, mas o verde fornece sombreamento adequado para a exposição do trabalhador e tolerâncias de projeto.
  5. Melhor reconhecimento da máquina:

    • Durante os processos de fabricação de PCB, como fabricação de placas e soldagem de componentes para montagem em superfície, inspeção visual é crucial. PCBs verdes oferecem melhor visibilidade em ambientes com luz amarela, auxiliando no reconhecimento e calibração da máquina para tarefas como aplicação de pasta de solda e inspeção óptica automatizada (Aoi).
  6. Conforto para trabalhadores:

    • Em alguns processos de inspeção manual (embora cada vez mais substituído por testes automatizados), os trabalhadores podem observar PCBs sob iluminação forte. Os PCBs verdes são mais confortáveis ​​para os olhos nessas condições.
  7. Redução de custos:

    • PCBs verdes têm uso generalizado, permitindo economias de escala na produção e compras. A padronização em uma cor reduz os custos da linha de produção, já que a compra em massa da máscara de solda da mesma cor reduz os custos de aquisição. Consequentemente, máscara de solda verde é vantajosa em termos de custos de fabricação e prazos de entrega.
  8. Relativa compatibilidade ambiental:

    • PCBs verdes são relativamente ecológicos, pois não liberam gases tóxicos durante a reciclagem em alta temperatura de placas de resíduos. Outras cores de PCB, como azul e preto, contém cobalto e carbono, que apresentam riscos de curto-circuitos devido à condutividade mais fraca.

Adicionalmente, PCBs de cores mais escuras, como aqueles em preto, roxo, ou azul, pode aumentar a dificuldade na inspeção do conselho e apresentar desafios no controle de fabricação.

A influência da cor do PCB nas placas de circuito é multifacetada. Afeta não apenas o custo e a aparência do PCB, mas também impacta diretamente as propriedades físicas e químicas dos materiais do PCB., influenciando assim o desempenho e a confiabilidade do PCB. Portanto, ao selecionar cores PCB, é necessário considerar uma ampla gama de fatores, como o ambiente de aplicação, requisitos, e custos do produto. Enquanto isso, os fabricantes precisam melhorar a qualidade e o desempenho dos PCBs por meio de processos e materiais de produção mais sofisticados para atender às necessidades de produção de PCBs em cores diferentes.

O status do substrato de embalagem na indústria de PCB

If the PCB industry were a pyramid, undoubtedly, the substrate would be the gleaming jewel perched at its apex.

Firstly, it holds immense importance.

The substrate is the core material in the chip packaging process, characterized by its high density, precision, performance, miniaturização, and thinness. It, along with the die and leads, forms the chip after packaging and testing. O Substrato IC not only provides support, heat dissipation, and protection for the chip but also serves as the electronic connection between the chip and the PCB, playing a pivotallinking and enablingrole, and can even embed passive or active devices to achieve certain system functions.

Segundo, its barriers are exceptionally high.

According to the minutes of the investor survey by Xinsen Technology, newcomers in the substrate field require at least 2 para 3 years to establish a team, acquire land and build factories, complete decoration and debugging, pass large customer certifications, and ramp up production capacity. Looking at the recent projects of domestic manufacturers in substrate production, the construction phase alone takes up to 2 anos, with several more years needed for capacity ramp-up. Além disso, projects involving high-end substrates like FC-BGA require even higher investment amounts due to the exorbitant equipment prices. Just consider, any random substrate project easily surpasses 2 billion yuan in investment, making it afighter jetin the industry’sburning moneybattle.

Aside from raising the investment threshold, the high processing difficulty is also a core barrier in substrate production. From the perspectives of product layers, board thickness, line width and spacing, and minimum annular width, substrates tend to lean towards precision and miniaturization. Além disso, with a unit size smaller than 150*150 mm, they represent a higher-end category of PCBs. Entre eles, the line width/spacing is the core differentiation, with the minimum line width/spacing of substrates ranging from 10 para 130 micrometers, far smaller than the 50 para 1000 micrometers of ordinary multilayer rigid PCBs. Ordinary PCB factories cannot handle such high-difficulty technical tasks.

Thirdly, its market prospects are incredibly vast.

With the rapid advancement of technology in the electronics industry, terminal application products are trending towards miniaturization, inteligência, and customization, making the demand for high-end PCB products more prominent. Além disso, driven by a new wave of computational power, China’s substrate supply fails to meet the robust market demand, presenting the industry chain with expansive market space.

From the global demand perspective of IC substrates, these products are primarily applied in fields such as CPUs, GPUs, and high-end servers.

Nos últimos anos, with the widespread application of technologies like 5G, Ai, and cloud computing, the demand for high-computational chips has been continuously increasing, thereby propelling the growth of substrate production value. This trend has stimulated a significant growth in the demand for chips and advanced packaging in the electronics industry, indirectly promoting the development of the global substrate industry.

In terms of market size, the Chinese substrate market reached 20.1 billion yuan in 2022, a year-on-year increase of 1.5%. According to forecasts from the China Industry Research Institute, por 2023, this market size will reach 20.7 billion yuan, with a growth rate of 3%. Simultaneously, the production volume of Chinese substrates has been increasing year by year. Em 2022, the production reached 1.381 million square meters, an 11.73% increase year-on-year. It is expected to reach 1.515 million square meters by 2023, with a growth rate of 9.7%.

Looking at the medium to long term, the IC substrate market is expected to maintain rapid growth. According to Prismark’s forecast, por 2027, the market size of IC substrates will reach 22.286 Bilhão de dólares americanos, with a compound annual growth rate (CAGR) de 5.10% between 2022 e 2027. It is estimated that by 2027, the overall size of China’s IC substrate industry will reach 4.387 Bilhão de dólares americanos, with a CAGR of 4.60% between 2022 e 2027.

The recent surge in Chiplet packaging technology has injected new vitality into the growth of IC substrates. The rapid growth in the market size of Chiplet processor chips will drive the demand for ABF substrates. Advanced packaging technologies will increase the consumption of ABF substrates, and the introduction of 2.5/3D IC high-end technologies into products may enter mass production in the future, inevitably bringing greater growth momentum.

Fourthly, its players are industry giants.

Atualmente, IC substrate companies from Japan, Coréia do Sul, and the Taiwanese region hold absolute leading positions. According to statistics from the Taiwan Printed Circuit Association, the top ten global substrate suppliers and their market shares in 2022 were as follows: Unimicron (17.7%), Nan Ya Printed Circuit Board (10.3%), Ibiden (9.7%), Samsung Electro-Mechanics (9.1%), Shinko Electric Industries (8.5%), JCET Group (7.3%), LG Innotek (6.5%), NO&S (6.1%), Daeduck Electronics (4.9%), and Compeq Manufacturing (4.7%).

The top five global BT substrate manufacturers were LG Innotek (14.2%), Samsung Electro-Mechanics (11.9%), Compeq Manufacturing (10.3%), JCET Group (9.5%), and Unimicron (7.7%). The top five global ABF substrate manufacturers were Unimicron (26.6%), Ibiden (14.6%), Nan Ya Printed Circuit Board (13.5%), Shinko Electric Industries (12.8%), and AT&S (8.0%).

Although China’s IC substrate industry started relatively late, strong players have emerged continuously. Major suppliers include Shennan Circuit, Xinsen Technology, and Zhuhai Youya, which primarily possess mass production capabilities for BT substrates. Além disso, since 2019, some manufacturers primarily engaged in PCB products have also begun investing in IC substrate projects, indicating a quietly evolving industrial landscape.

Para concluir, factors such as technological difficulty, industry players, investment barriers, market prospects, and critical roles have firmly established substrates at the forefront of the industry, rightfully earning them the title of the gleaming jewel atop the PCB pyramid.

Guia de operação de solda de onda para montagem de PCB

O que é soldagem por onda?

Soldagem por onda refere-se ao processo de formação de uma onda de solda de liga de solda derretida, normalmente usando uma bomba elétrica ou uma bomba eletromagnética, para atingir a altura de onda de solda desejada. Alternativamente, gás nitrogênio pode ser injetado no pote de solda para criar a onda. Durante a soldagem por onda, uma placa de circuito impresso (PCB) com componentes pré-montados passa pela onda de solda, formando um formato específico de filete de solda na superfície da solda líquida. Este processo, em que a placa de circuito impresso com componentes passa pela onda de solda em um ângulo específico e com uma certa profundidade de imersão para obter conexões de junta de solda, é chamado de soldagem por onda.

Desenvolvimento histórico da soldagem por onda

  1. Origem da soldagem por onda manual Solda por onda, como uma tecnologia de soldagem eletrônica, surgiu no início da década de 1960. Naquela hora, equipamento de solda por onda operado manualmente foi amplamente utilizado. Devido à sua estrutura simples, operação complexa, e baixa eficiência, a aplicação de equipamento de solda por onda manual foi um tanto limitada.

  2. Controle de automação de equipamentos de soldagem por onda no início dos anos 1970, equipamentos de solda por onda começaram a fazer a transição para o controle de automação. Com o desenvolvimento contínuo da tecnologia eletrônica, o equipamento alcançou gradualmente o controle de automação, melhorando significativamente a eficiência da produção. Durante este período, vários sistemas de controle automático para equipamentos de solda por onda, incluindo CLPs e microcontroladores, começou a aparecer.

  3. Digitalização de equipamentos de soldagem por onda desde o século 21, equipamentos de solda por onda têm avançado em direção à digitalização. A aplicação da tecnologia digital permitiu que equipamentos de solda por onda alcançassem maior precisão, qualidade mais estável, maior eficiência de produção, e redução de custos de produção. Em particular, a aplicação da tecnologia CAD em equipamentos de soldagem por onda resultou em efeitos de soldagem mais estáveis ​​e consistentes.

O princípio de funcionamento da soldagem por onda

O princípio fundamental da soldagem por onda é utilizar solda fundida para formar uma onda na superfície de solda.. O material de solda é aquecido e derretido à medida que passa pela onda, em seguida, entra em contato com a superfície de solda para criar uma junta de solda. A chave para a soldagem por onda reside no controle da temperatura e fluidez da solda para garantir a qualidade da junta.

  1. Formação de solda fundida: Inicialmente, a solda derretida é formada no recipiente de solda através da pressão da bomba, criando uma forma específica de onda de solda em sua superfície.

  2. Transporte de placa de circuito: A placa de circuito é transportada através da máquina de solda por onda em um transportador de corrente, passando pela zona de pré-aquecimento para garantir o controle de temperatura durante a soldagem.

  3. Processo de soldagem: À medida que a placa de circuito passa pela onda de solda em um determinado ângulo, seus pinos captam a solda da solda líquida, que solidifica durante o resfriamento para formar juntas de solda. A onda de solda molha a área de solda e se estende para preencher, facilitando o processo de soldagem.

  4. Qualidade de soldagem: A tecnologia de soldagem por onda é adequada para soldar uma variedade de metais e não metais, incluindo alumínio, cobre, aço, bem como plásticos, cerâmica, e outros materiais não metálicos. É amplamente utilizado em eletrônica, maquinaria, fabricação automotiva, e outros campos, proporcionando eficiência, rápido, e soldagem precisa para atender a alta precisão, alta confiabilidade, e requisitos de soldagem de alta qualidade.

O processo de soldagem por onda

O processo de soldagem por onda envolve as seguintes etapas:

  1. Preparação: Garantir a qualidade do PCB e dos componentes eletrônicos a serem soldados, e realizar os tratamentos de superfície necessários, como limpeza e remoção de óxido.

  2. Aplicação de pasta de solda: Aplique pasta de solda nas áreas de solda apropriadas na PCB, normalmente cobrindo as superfícies de contato dos pinos dos componentes e almofadas de PCB.

  3. Colocação de componentes: Monte com precisão componentes eletrônicos na PCB em locais predeterminados. Isso pode ser feito usando máquinas automatizadas de coleta e colocação ou métodos manuais.

  4. Configuração da máquina de solda por onda: Configure a máquina de solda por onda de acordo com os requisitos e especificações de soldagem, incluindo temperatura de soldagem, altura da onda, zona de pré-aquecimento, e velocidade de soldagem.

  5. Processo de soldagem: Mova a PCB montada através do sistema transportador até a área da onda de solda. A solda derretida na área da onda entra em contato com as almofadas da PCB e os pinos dos componentes, formando juntas de solda.

  6. Resfriamento e solidificação: Assim que o PCB sair da área da onda de solda, as juntas de solda são rapidamente resfriadas e solidificadas através de um processo de resfriamento, estabelecendo conexões de solda estáveis.

  7. Inspeção e controle de qualidade: Inspecione e execute verificações de controle de qualidade na PCB soldada, incluindo inspeção visual, Teste de raios-X, e testes de confiabilidade de juntas de solda, para garantir que a qualidade da soldagem atenda aos requisitos.

Guia de operação para equipamento de solda por onda

  1. Preparando-se para soldagem por onda

(1) Ligue a chave de alimentação principal de acordo com o cronograma de operação do equipamento e controle o tempo de troca do pote de solda através da válvula eletromagnética de tempo.

(2) Verifique se o indicador de temperatura do pote de solda está funcionando corretamente: Meça a temperatura em torno de 15 mm abaixo e acima do nível do líquido do pote de solda com um termômetro, e certifique-se de que a temperatura real definida permaneça dentro de uma faixa de ±5°C.

(3) Verifique o funcionamento do cortador de chumbo: Ajuste a altura da cabeça de corte com base na espessura do PCBA, visando comprimentos de pinos componentes entre 1.4 a 2,0 mm.

(4) Verifique o fornecimento normal de fluxo: Despeje o fluxo no fundente, ajustar a válvula de entrada de ar, e ative o fundente para verificar se há espuma ou pulverização de fluxo. Ajuste a taxa de fluxo para atender aos requisitos.

(5) Verifique a altura do nível de solda; se estiver abaixo de 12-15 mm do pote de solda, adicione solda imediatamente. Adicione solda em lotes, não excedendo 10 quilogramas de cada vez.

(6) Limpe a escória de solda da superfície da solda, e adicione antioxidante após a limpeza.

(7) Ajuste o ângulo do trilho de transporte: Ajuste a largura total do trilho de acordo com a largura total dos PCBAs a serem soldados, garantindo força de fixação moderada. Ajuste a inclinação do trilho com base na densidade dos pinos dos componentes soldados.

  1. Processo de inicialização para soldagem por onda

(1) Ligue o interruptor de fluxo, ajustando a espuma ajustando a espessura da placa para metade “eu” durante a formação de espuma. Para pulverização, certifique-se de que a placa seja simétrica, com volume de pulverização moderado, de preferência evitando a pulverização nas superfícies dos componentes.

(2) Ajuste o fluxo de ar da faca de ar para permitir que o excesso de fluxo na placa goteje de volta para a ranhura de espuma, evitando gotejamentos no pré-aquecedor que podem causar incêndio.

(3) Ligue a chave de transporte e ajuste a velocidade de transporte para o valor desejado.

(4) Ligue os ventiladores de resfriamento.

  1. Procedimento de soldagem pós-onda

(1) Desligue os interruptores do pré-aquecedor, onda de pote de solda, fundente, transporte, ventiladores de resfriamento, e cortador de chumbo.

(2) Durante a operação, substitua o fluxo na ranhura de espuma a cada duas semanas e meça regularmente.

(3) Após o desligamento, limpe bem a máquina de solda por onda e as garras, embeber os bicos em um solvente de limpeza.

Solda de onda

Vantagens e desvantagens da soldagem por onda

Vantagens:

Alta eficiência: A soldagem por onda pode soldar simultaneamente um grande número de componentes passantes, aumentando a eficiência da produção e a produção.

Qualidade de soldagem: Através do controle rigoroso dos parâmetros de soldagem, como temperatura, tempo de soldagem, e fluxo de fluxo de solda, soldagem por onda garante qualidade de soldagem estável.

Baixo custo: A soldagem por onda pode usar componentes e equipamentos padronizados, reduzindo custos de produção.

Desvantagens:

Limitações de componentes: A soldagem por onda só pode soldar componentes através do orifício e não pode soldar componentes de montagem em superfície.

Limitações de tamanho grande: A soldagem por onda requer que o PCB seja inclinado na palete de solda, portanto, existem certas limitações no tamanho e formato do PCB.

Dificuldade de manutenção: As máquinas de solda por onda requerem manutenção e limpeza regulares, o que pode ser desafiador.

Aplicações de soldagem por onda

A tecnologia de soldagem por onda tem sido amplamente aplicada em vários produtos eletrônicos, incluindo eletrônicos de consumo, equipamento de comunicação, computadores, e mais. Aqui estão as principais áreas de aplicação da soldagem por onda:

● Eletrodomésticos: A soldagem por onda tornou-se a principal tecnologia de soldagem na fabricação de eletrodomésticos, incluindo TVs, DVDs, aparelhos de som, e mais.

● Eletrônica Automotiva: A tecnologia de soldagem por onda tem sido aplicada em produtos eletrônicos automotivos, incluindo sistemas de entretenimento em veículos, sistemas de controle de segurança, etc., aumentando a confiabilidade e a segurança de produtos eletrônicos automotivos.

● Equipamento de comunicação: A tecnologia de soldagem por onda tem sido amplamente utilizada em equipamentos de comunicação, como estações base, roteadores, etc., permitindo projetos de circuitos de alta densidade e alta velocidade.

● Controle Industrial: A tecnologia de soldagem por onda tem sido aplicada no campo do controle industrial, incluindo CLPs, computadores industriais, etc., melhorando a confiabilidade e estabilidade do equipamento.

Desenvolvimento futuro da soldagem por onda

Com a tendência de miniaturização e produtos eletrônicos de alta densidade, a tecnologia de soldagem por onda está continuamente inovando e desenvolvendo. Aqui estão as direções de desenvolvimento futuro da soldagem por onda:

● Maior automação: O nível de automação das máquinas de solda por onda continuará a aumentar, incluindo automação de alimentação de componentes e fornecimento de líquido de solda.

● Melhor qualidade de soldagem: A qualidade da soldagem das máquinas de solda por onda continuará a melhorar, incluindo controle mais preciso dos parâmetros de soldagem, como temperatura, tempo de soldagem, fluxo de solda, etc..

● Inovação em Materiais de Soldagem: Com a crescente consciência ambiental, os materiais de soldagem usados ​​nas máquinas de solda por onda continuarão a inovar e melhorar, incluindo a adoção de solda sem chumbo e outros materiais ecológicos.

● Expansão das Áreas de Aplicação: A tecnologia de soldagem por onda será aplicada em mais produtos eletrônicos, incluindo casas inteligentes, a Internet das Coisas (IoT), etc..

Resumindo, como um importante Componente eletrônico tecnologia de soldagem, a soldagem por onda tem sido amplamente aplicada em vários produtos eletrônicos. Com contínua inovação e desenvolvimento tecnológico, desempenhará um papel cada vez mais importante no futuro.

Principal 8 Fabricantes de PCB na Tailândia

Como uma economia importante no sudeste da Ásia, Tailândia está atraindo ativamente o investimento de global Manufatura de PCB empresas. Atualmente, Muitos fabricantes de PCB da China, Coréia do Sul, Japão, E os Estados Unidos estabeleceram fábricas na Tailândia. De 2022 para 2027, A taxa de crescimento composto do valor global de saída da PCB foi sobre 3.8%. Espera -se que por 2027, o valor global de saída de PCB chegará a 98.388 Bilhão de dólares americanos. Esta tendência de crescimento global oferece um bom ambiente externo para o desenvolvimento da indústria de PCB tailandesa. Hoje vamos contar com o topo 8 Fabricantes de PCB na Tailândia.

1.Shennan Circuits Co., Ltd.

Shennan Circuits Co., Ltd. (a seguir referido como “SCC”), fundado em 1984 , está sediado em Shenzhen, Guangdong, China. Suas principais instalações de fabricação estão localizadas em Shenzhen, Wuxi e Nantong, Jiangsu, China. Seus negócios estão em todo o mundo, E há subsidiárias na América do Norte e r&D Sites na Europa.

Capacidade de fabricação

Unid Massa Amostra
Camadas 2~ 68L 120L
Máx. Espessura da placa 10mm (394mil) 14mm (551mil)
Min. Largura Camada interna 2.2mil/2.2mil 2.0mil/2.0mil
Camada externa 2.5/2.5mil 2.2/2.2mil
Registro Mesmo núcleo ± 25um ± 20um
Camada a camada ± 5mil ± 4mil
Máx. Espessura de cobre 6Oz 30Oz
Min. Dlameter do buraco da broca Mecânico ≥0,15 mm(6mil) ≥0,1mm(4mil)
Laser 0.1mm (4mil) 0.050mm (2mil)
Máx. Tamanho (Tamanho do acabamento) Cartão de linha 850mmx570mm 1000mmx600mm
Backplane 1250mmx570mm 1320mmx600mm
Proporção de aspecto (Fundo de acabamento) Cartão de linha 20:1 28:1
Backplane 25:1 35:1
Material FR4 Em827, 370Hr, S1000-2, IT180A, EM825YOUTS, IT158, S1000 / S1155, R1566W, Em285, TU862HF
Alta velocidade Megtron6, Megtron4, Megtron7, TU872SLK, FR408HR,Série N4000-13,MW4000, MW2000, TU933
Alta freqüência RO3003, RO3006, RO4350B, RO4360G2, RO4835, Clte, GENCLAD, RF35, Fastrise27
Outros Poliimida, Tk, LCP, Bt, C-Ply, Fradflex, Ómega , ZBC2000,
Acabamento superficial Hask, Concordar, Estanho de imersão, Osp, Silve de imersão, Dedo dourado, Eletroplicar ouro duro/ouro macio, OSP seletivo,Enepic

2.Kinwong Electronics

Kinwong Electronics

Estabelecido em 1993, A Jingwang Electronics é uma principal empresa de alta tecnologia do mundo em desenvolvimento, produzindo e vendendo pesquisa e desenvolvimento de alta tecnologia, Produção e vendas de materiais eletrônicos de alto end. Estabelecer 11 escritórios em todo o mundo para fornecer serviço instantâneo localizado da FAE.

Os produtos de Kinwong cobrem a PCB convencional, Flex PCB, PCB de base de metal, PCB rígido-flex, HDI PCB, Alta contagem de camadas PCB, Substrato como o PCB,RF PCB, Incrustação de cobre, etc.. Somos um dos poucos fabricantes domésticos que cobre placas de circuito rígidas, Placas de circuito flexíveis e placas de circuito de base metal. Kinwong fornece aos clientes competitivos, produtos confiáveis, soluções e serviços nas áreas de automóveis, Telecom, Computação, Terminal inteligente, Industrial & Médico, Fonte de energia e consumidor.

Capacidade de fabricação de placa de circuito convencional

Contagem de camadas: 2L/4L/6L/8L/10L
Máx. Tamanho do painel de entrega: 699mm × 594mm
Máx. Peso de cobre (Camada interna/externa): 12Oz
Espessura máxima: 5.0mm
Máx. Proporção de aspecto: 15:1
Acabamento superficial: LF-HASL, Concordar, Im-ag, Imm-sn, Osp, Enepic, Dedo dourado

3.Shengyi Electronics Co., Ltd.

Shengyi Electronics Co., Ltd. foi estabelecido em 1985. Está sediado na cidade de Dongguan, Província de Guangdong. É uma empresa nacional de alta tecnologia especializada em alta precisão, alta densidade, e placa de circuito de impressão de alta qualidade. A Shengyi Electronics fornece aos clientes uma solução de placa de impressão de uma parada de impressão, que é amplamente utilizado nos campos do equipamento de comunicação, carros, aeroespacial e outros campos.

Capacidade de tecnologia

Shengyi Electronics

4.Eletrônica APCB (Tailândia)

APCB INC. Fundado em agosto 1981, É uma fábrica de PCB para camadas múltiplas localizada em Taipei, Taiwan. Os principais projetos de PCB são produzidos principalmente por eletrônicos de consumo.
Depois de anos de trabalho duro através da equipe da APCB, seja desenvolvendo novas tecnologias ou investimentos em equipamentos avançados de produção, Expandimos com sucesso a capacidade de produção e a melhoria da qualidade. Fazendo isso, Podemos expandir nossa linha de produtos para várias aplicações, incluindo produtos eletrônicos, Acessórios relacionados ao computador, produtos de comunicação, etc..

Capacidade de tecnologia

5.Indústrias de circuito

As indústrias de circuito foram fundadas em 1990. É o principal fabricante da placa de circuito impresso (PCB) ou placa de circuito impresso (PWB) Na Tailândia, envolvido na fabricação de PCBs; PCB de alumínio e assim por diante. A empresa obteve a seguinte certificação: Ul Arquivo E-115789 Placa de circuito impresso seguro (PCB); ISO 9001:2015 Sistema de gerenciamento da qualidade; ISO 14001:2015 Sistema de Gerenciamento Ambiental; ISO 45001:2018 Sistema de Gerenciamento de Saúde e Segurança Ocupacional; Sistema de gestão da qualidade do fabricante de peças automotivas IATF 16949:2016; e tls 8001:2010.

Capacidade de tecnologia

Assunto

Pequeno volume

Volume de massa

Observações

Máx. Contagem de camadas 10 Camadas 10 Camadas Através do tipo de orifício apenas. Para Laminação Sequencial de HDI Max. 6 Camada
PTH aspecto da proporção 10 : 1 8 : 1 Espessura do material : Diâmetro da broca
Min. Tamanho da broca 0.15 mm 0.2 mm
Min. Espessura da placa (Final) 0.8 mm 0.8 mm
Máx. Espessura da placa (Final) 3.0 mm 3.0 mm Somente FR-4 multicamada
Min. Espessura pré -gravista 0.075 mm 0.075 mm
Min. Espessura acabada de cobre 1 Oz (35 μm.) 1 Oz (35 μm.)
Camada interna máx. Espessura acabada de cobre 2 Oz (70 μm.) 2 Oz (70 μm.)
Camada externa máx. Espessura acabada de cobre 3 Oz (105 μm.) 3 Oz (105 μm.)
Min. Espaçamento de linha (Camada interna) 0.1 mm (4 mil.) 0.125 mm (5 mil.) Maior espessura de cobre requer linha e espaço mais largos
Min. Espaçamento de linha (Camada externa) 0.1 mm (4 mil.) 0.125 mm (5 mil.)
Min. Anel anular 0.125 mm (5 mil.) 0.125 mm (5 mil.)
Precisão da broca (+/-) 35 μm. 35 μm.
Registro de camadas multicamadas (+/-) 35 μm. 35 μm.
Registro de marca de solda (+/-) 75 μm. 75 μm.
Derrota / Tolerâncias de pontuação (+/-) 0.2 mm 0.2 mm
Cego via SIM SIM Cego mecânico via
Cego por proporção 1:1 1:1 Via plug / Preenchido e tapado Não disponível
Enterrado via SIM SIM

6.Público de precisão da equipe

Precisão da equipe é Tailândia Ems e tem mais de 20 anos de experiência na indústria. A gama de serviços de fabricação inclui compras globais e vários tipos de montagem de produção via Internet, como a Assembléia Tongkou, Assembléia SMT, espaçamento fino BGA, Flip chip, Cobre (Chip-on-board) Conjunto de ambiente sem poeira, DE (DE- Ionizado) Limpeza de água, Encapsatação do composto químico, Construição de caixa e embalagem de varejo pronta para vender.

Capacidade de tecnologia

● 11 linhas SMT em 2 fábricas
● Através de máquinas de inserção de automóveis inteiras.
● Flip Chip Technology
● Chip-on-board (Cobre)
● Conjunto de circuito impresso flexível (FPCA)
● Na linha de inspeção passada de solda
● Na linha de inspeção óptica automática (Aoi)
● Inspeção de raios-X
● DI Limpeza de água
● Engrando de laser interna
● Casado conforme, por exemplo. Spray, Mergulho etc..
● Processo de envasamento, por exemplo. poli uretano ou epóxi etc.
● No circuito e teste funcional
● Queimadura estática na câmara
● Queimadura dinâmica na câmara
● Montagem completa do produto : Bunha-Build to Retail Packing Assembly
● Equipamento de análise de falhas
● Várias logística do serviço de atendimento de pedidos a serviços de armazenamento, por exemplo,.

● Remessa direta para os clientes finais, Entrega de leite no mercado no exterior, Hub para a região etc. Com monitoramento on -line.
● Kanban e a equipe Certified Lean-Sigma e IPC
● ROHS/Reach Compliance

7.BestTech Manufacturing

BestTech FabanGurn Co., Ltd foi originalmente estabelecido em 2003 e é uma pequena fábrica de serviço de fabricante de subcontratação eletrônica. A demanda por alta qualidade e giro rápido Montagem da PCB Serviços em Panyulan (Tailândia) foi reconhecido. É um fabricante de subcontratados que serve a indústria de eletrônicos. Ele usa tecnologia convencional ou híbrida para produzir módulos de montagem de superfície gratuitamente.

Capacidade de tecnologia

Tipo de material SS PCB DS PTH PCB multicamada
Laminado usado FR-1, FR-2, CEM-1, CEM-3, FR-4 CEM-3, FR-4 FR-4
Basan, Hitachi,Isola Basan,Shenyi, Kingboard Basan,Shenyi,Kingboard
Alto laminado CTI disponível Alto laminado CTI disponível Alto laminado CTI disponível
Laminado livre de halogênio Laminado de alto desempenho TG Laminado de alto desempenho TG
A pedido A pedido A pedido
Espessura geral 0.80mm a 2,00 mm 0.40mm a 2,00 mm , Máx. 2 Camadas 0.40mm a 2,00 mm , Máx. 4-16 Camadas
Espessura da folha de cobre 35um, 70um 35um, 70um, 105um 35um, 70um ,105 um
Imagem padrão Linha / Espaçamento 0,20mm Linha / Espaçamento 0,10mm Linha / Espaçamento 0,10mm
Máscara de solda UV, Pisr mediante solicitação Pisr Pisr
Tamura/Union/Taiyo/Coates Min. abrindo 0,10mm Min. abrindo 0,10mm
Coates, Taiyo, Peters, Vantico Coates, Taiyo, Peters, Vantico
Verde, Amarelo, Azul, Preto Verde, Amarelo, Azul, Preto
Lenda UV UV UV
Min. Largura do recurso 0,18 mm Min. Largura do recurso 0,18 mm Min. Largura do recurso 0,20mm
Dentificação do produto Código de semana impresso na lenda Código de semana impresso na lenda Código de semana impresso na lenda
PeelableMask Tamanho máximo do orifício de tenda 2,80 mm Tamanho máximo do orifício de tenda 2,80 mm Tamanho máximo do orifício de tenda 2,80 mm
Fabricação Tamanho mínimo do orifício para a broca NC 0,30mm, Para Punch 0,65mm Tamanho mínimo do orifício para a broca NC 0,25mm, Para Punch 0,30mm Tamanho mínimo do orifício para a broca NC 0,25mm, Para Punch 0,30mm
Vida útil mínima de ferramenta suave 200k Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k
Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k FR-4 não recomendado para perfurar o buraco FR-4 não recomendado para perfurar o buraco
FR-4 não recomendado para perfurar o buraco Cut V está disponível Cut V está disponível
Cut V está disponível Chanfro está disponível Chanfro está disponível
Chanfro está disponível
Acabamento superficial Ni/Au eletrolítico PCB SS Concordar Concordar
Revestimento de fluxo de resina Revestimento Osp Revestimento Osp
Revestimento Osp Hal ou hasl Hal ou hasl
Roller lata no ss pcb, Hal no CEM-3, Produtos FR-4
Critérios de aceitação de produtos Siga os critérios de aceitação do IPC-A-600 Siga os critérios de aceitação do IPC-A-600 Siga os critérios de aceitação do IPC-A-600

8.Leadsin Technology Co.Ltd

LST é um provedor de serviços de solução EMS único que integra o PCBlayout, Manufatura de PCB, PCBA Solução e design de produto,Componente Componente, Smt, Dipe a montagem e o teste do produto acabado.

Temos uma rica experiência de fabricação e equipe técnica profissional para fornecer serviços de PCB para clientes globais, Nossos produtos cobrem automotivo, médico, Controle industrial, comunicação, Internet das coisas, eletrônica de consumo, garantia de qualidade e preço acessível.

Capacidade de tecnologia

Número de camadas 1-48 camadas
Materiais FR4, TG = 135150170180210, CEM-3, CEM-1, substrato de alumínio, Ptfe, Rogers, ONCO
Espessura de cobre 1/2Oz, 1Oz, 2Oz, 3Oz, 4Oz, 5Oz
Espessura da placa 8-236mil (0.2-6.0mm)
Largura/espaçamento mínimo da linha 3/3 milhão (75/75um)
Tamanho da perfuração minuto 8 milhão (0.2 mm)
Tamanho da broca de laser de HDI min 3 milhão (0.067 mm)
Tolerância à abertura 2 milhão (0.05 mm)
Espessura do cobre PTH 1 milhão (25 microns)
Cor de soldagem de resistência Verde, Azul, Amarelo, Branco, Preto, Vermelho
Camada de máscara de solda ripileira sim
tratamento de superfície Sangrar (Rohs), Ening, Osp, naufrágio de prata, lata afundando, ouro brilhante, dedos dourados
Espessura do ouro 2-30você “(0.05-0.76um)
Buraco cego/buraco enterrado sim
Corte em forma de V. sim

Guia detalhado para processamento de PCBA

O PCBA processing process covers the entire process from raw material procurement to finished product shipment, including SMT chip mounting, DIP plug-in processing, PCBA testing, three-proof coating, and finished product assembly. Each step strictly follows the process requirements to ensure the quality and performance of the final product. Neste artigo, we will detail the manufacturing process of PCBA, with the specific contents as follows.

SMT Chip Mounting Process

The process of SMT chip mounting includes: solder paste mixing → solder paste printing → SPI → mounting → reflow soldering → AOI → rework.

  1. Solder Paste Mixing

After taking the solder paste out of the refrigerator and thawing it, it is mixed manually or by machine to be suitable for printing and soldering.

  1. Impressão de pasta de solda

Place the solder paste on the steel mesh and use a scraper to print the solder paste onto the PCB pads.

  1. Spi

Spi, namely solder paste thickness detector, can detect the printing condition of solder paste, playing a role in controlling the effect of solder paste printing.

  1. Mounting

Various components are automatically mounted on the circuit board using machine equipment.

  1. Soldagem de reflexão

The assembled PCB board is reflow soldered, where the solder paste is heated to become liquid through high temperature inside and then cooled and solidified to complete the soldering.

  1. Aoi

Aoi, namely automatic optical inspection, can scan and detect the soldering effect of the PCB board, identifying any defects.

  1. Rework

Defects identified by AOI or manual inspection are reworked.

DIP Plug-in Processing Process

The process of DIP plug-in processing includes: plug-in → solda de onda → trimming → post-solder processing → cleaning → quality inspection.

  1. Plug-in

Process the pin of the plug-in material and install it on the PCB board.

  1. Solda de onda

Pass the assembled board through wave soldering, where liquid tin is sprayed onto the PCB board, and then cooled to complete the soldering.

  1. Trimming

The pins of the soldered board need to be trimmed if they are too long.

  1. Post-solder Processing

Manual soldering of components is performed using an electric soldering iron.

  1. Limpeza

After wave soldering, the board may be dirty and requires cleaning using cleaning solution and washing tank, or by using a cleaning machine.

  1. Inspeção de qualidade

Inspect the PCB board, and defective products need to be reworked before qualified products can proceed to the next process.

Teste de PCBA

PCBA testing includes ICT testing, Teste de FCT, aging testing, vibration testing, etc..

PCBA testing is a comprehensive process, and the testing methods adopted vary depending on the product and customer requirements. ICT testing checks the soldering of components and the continuity of circuits, while FCT testing examines the input and output parameters of the PCBA board to ensure compliance with requirements.

PCBA Three-proof Coating

The process of PCBA three-proof coating includes: brushing Side A → air drying → brushing Side B → room temperature curing. The spraying thickness is 0.1mm to 0.3mm. All coating operations should be carried out under conditions of not less than 16°C and relative humidity below 75%. PCBA three-proof coating is widely used, especially in harsh environments with high temperature and humidity. The coating provides excellent insulation, moisture resistance, leak resistance, shock resistance, dust resistance, corrosion resistance, anti-aging, anti-mildew, anti-loosening of components, and insulation against electric arcing. It can extend the storage time of PCBA, isolate external erosion, pollution, etc.. Entre eles, the spraying method is the most commonly used coating method in the industry.

Final Assembly

The PCBA boards that have been tested OK after coating are assembled into the outer casing, followed by testing, and finally ready for shipment.

PCBA production is a chain of processes, and any problem in any link can have a significant impact on the overall quality. It requires strict control over each process.

Overall, PCBA processing requires meticulous attention to detail and adherence to industry standards to produce reliable and high-quality electronic devices.