Entries by

Características e aplicações de PCBs de alumínio

Aluminum PCBs are a type of metal-based copper-clad laminate known for their excellent heat dissipation properties. A typical single-sided aluminum PCB consists of three layers: the circuit layer (copper foil), the insulation layer, and the metal base layer. For high-end applications, double-sided designs are also available, featuring a structure of circuit layer, insulation layer, aluminum base, insulation layer, and another circuit layer. In rare cases, multilayer boards are used, combining standard multilayer boards with insulation layers and aluminum bases.

Advantages of Aluminum PCBs

  1. Eco-Friendly: Aluminum is non-toxic and recyclable. Its ease of assembly also contributes to energy savings. For PCB suppliers, using aluminum supports environmental sustainability.

  2. Heat Dissipation: High temperatures can severely damage electronic components, so using materials that aid in heat dissipation is prudent. Aluminum effectively transfers heat away from critical components, minimizing its detrimental impact on the circuit board.

  3. Enhanced Durability: Aluminum provides a level of strength and durability that ceramic or fiberglass substrates cannot. It serves as a robust base material, reducing the likelihood of accidental damage during manufacturing, handling, and everyday use.

  4. Lightweight: Despite its remarkable durability, aluminum is surprisingly lightweight. It adds strength and resilience without adding significant weight.

Applications of Aluminum PCBs

  1. LED Lighting: The primary application of aluminum PCBs is in LED lighting. LEDs generate significant heat during operation, and the excellent heat dissipation properties of aluminum PCBs ensure the stable functioning of LEDs, thereby enhancing the lifespan and reliability of the lighting fixtures.

  2. Automotive Electronics: With the increasing degree of automotive electrification, the number and density of electronic components in vehicles are rising. The lightweight nature, excellent thermal management, and electrical performance of aluminum PCBs make them an ideal choice for automotive electronics.

  3. Renewable Energy: Aluminum PCBs play a crucial role in renewable energy sectors like solar and wind power. Por exemplo, solar panels need to efficiently convert solar energy into electrical energy, and the superior heat dissipation of aluminum PCBs helps maintain the stable operation of solar cells.

  4. Power Electronics: In power electronic devices such as inverters and converters, the use of aluminum PCBs ensures stable operation under high power densities.

  5. Industrial Automation: In industrial automation control systems, the high reliability, estabilidade, and excellent electrical performance of aluminum PCBs make them the preferred material for critical components.

Applications of Aluminum PCBs

Manufacturing Process of Aluminum PCBs

  1. Mechanical Processing:

    • Perfuração: While aluminum PCBs can be drilled, any burrs on the edges of the holes are unacceptable as they can affect the withstand voltage test.
    • Milling the Outline: Milling the outline is challenging. Punching the outline requires high-quality molds, which is a critical aspect of aluminum PCB production.
    • Punching: After punching the outline, the edges must be very neat, free of any burrs, and the solder mask layer on the edges should remain intact. Punching involves intricate techniques such as using a blanking die, ensuring the board does not warp more than 0.5% after the process.
  2. Avoid Scratches on the Aluminum Base:

    • The aluminum base must remain untouched throughout the process to prevent discoloration or blackening due to chemical exposure or handling. Any damage to the aluminum base is unacceptable, as re-polishing is often not permitted by customers. Protective measures, like passivation or applying protective films before and after hot air leveling (Sangrar), are essential to prevent damage.
  3. High Voltage Testing:

    • Aluminum PCBs for communication power supplies require 100% high voltage testing. Customers may specify either DC or AC testing, with voltages typically around 1500V or 1600V for durations of 5 para 10 segundos. Any dirt, burrs on holes or edges, jagged lines, or damage to the insulating layer can cause fires, leakage, or breakdowns during these tests. Issues such as delamination or bubbling during high voltage testing are grounds for rejection.

Aluminum PCB Manufacturing Specifications

  1. Espessura da folha de cobre:

    • Aluminum PCBs are often used for power devices with high power densities, so the copper foil is typically thicker. For copper foil thicknesses of 3oz or more, the etching process requires precise line width compensation in the engineering design to ensure that the etched line width remains within tolerance.
  2. Protection of the Aluminum Base:

    • During the Manufatura de PCB processo, the aluminum base must be protected with a protective film to prevent damage from chemical exposure, which can tarnish the surface. This protective film is prone to damage, requiring careful handling and placement of the boards in racks throughout the process.
  3. Milling Tools:

    • Milling tools used for fiberglass boards (FR-4) have lower hardness, whereas those for aluminum PCBs require higher hardness. The milling speed for fiberglass boards is relatively high, but it must be reduced by at least two-thirds when milling aluminum PCBs.
  4. Cooling During Milling:

    • For milling fiberglass boards, the machine’s built-in cooling system is typically sufficient. No entanto, when milling aluminum PCBs, additional cooling, such as applying alcohol to the milling bit, is necessary to dissipate heat effectively.

Diferença entre PCB de alta velocidade e PCB de alta frequência.

PCB, ou placa de circuito impresso, é um componente indispensável em produtos eletrônicos. PCBs diferentes usados ​​em várias aplicações têm características e vantagens distintas. Entre eles, PCBs de alta frequência e PCBs de alta velocidade são dois tipos especiais, cada um com aplicações e benefícios exclusivos. Neste artigo, Introduziremos as diferenças e características de PCBs de alta velocidade e PCBs de alta frequência.

O que são PCBs de alta velocidade?

PCBs de alta velocidade são placas de circuito impresso projetadas e fabricadas, considerando fatores como velocidade de transmissão de sinal, distância de transmissão, e integridade do sinal. Eles são normalmente usados ​​em aplicações que exigem alta frequência, de alta velocidade, e transmissão de dados de alta precisão, como equipamento de comunicação, hardware do computador, e dispositivos médicos.

O que são PCBs de alta frequência?

PCBs de alta frequência são projetados especificamente para lidar com sinais de alta frequência. Seu design, fabricação, e a seleção de materiais são otimizados para as características da transmissão de sinal de alta frequência para garantir a estabilidade, integridade, e baixa perda durante a transmissão. PCBs de alta frequência são comumente usados ​​na comunicação sem fio, Comunicação de microondas, comunicação por satélite, sistemas de radar, e outros campos onde as altas demandas são colocadas na velocidade de transmissão de sinal e na estabilidade. Portanto, O desempenho de PCBs de alta frequência afeta diretamente o desempenho geral do sistema.

As diferenças entre PCBs de alta velocidade e PCBs de alta frequência:

  1. Aplicações diferentes:

PCBs de alta frequência: Usado principalmente em aplicações como comunicação sem fio e sistemas de radar que requerem transmissão de sinais de alta frequência, com altas demandas por fidelidade de sinal e estabilidade.

PCBs de alta frequência de alta velocidade: Comumente encontrado em placas -mãe de computador, dispositivos de rede, etc., Suportando transmissão e processamento de dados de alta velocidade para garantir a integridade do sinal durante a transmissão no PCB, Evitando distorção e interferência do sinal.

  1. Diferentes materiais utilizados:

PCBs de alta frequência: Utilize substratos feitos de vários materiais constantes dielétricos, como fibra de vidro e seus derivados, conhecido por baixa perda dielétrica e propriedades elétricas estáveis.

PCBs de alta frequência de alta velocidade: Empregar materiais com baixas constantes dielétricas para garantir a velocidade de transmissão do sinal, enquanto também se concentra na estabilidade dielétrica e no desempenho da absorção.

  1. Diferentes requisitos de design:

PCBs de alta frequência: As considerações de design incluem fatores de desempenho de transmissão de sinal, como a interface de diafonia, atenuação, harmônicos, bem como fatores como a espessura da placa, pressão do substrato, e precisão.

PCBs de alta frequência de alta velocidade: O design se concentra nas características das linhas de transmissão, impedância, Equilíbrio de linhas de transmissão diferencial, Integridade do sinal da porta, Crosstalk, e medidas anti-interferência para garantir a transmissão de sinal estável e rápida.

  1. Diferenças nos processos de fabricação:

PCBs de alta frequência: Requer controle rigoroso da perda de circuito, radiação eletromagnética, etc., usando materiais e processos de alta qualidade, como seleção de material especial, largura de linha fina e espaçamento, blindagem eletromagnética, etc..

PCBs de alta frequência de alta velocidade: Processos de fabricação envolvem design e técnicas complexas para garantir uma rápida e estável transmissão de sinal, incluindo roteamento, layout da camada de sinal, Design de aterramento, Análise de integridade do sinal, etc..

  1. Diferenças no teste e validação:

PCBs de alta frequência requerem equipamentos de teste especializados para verificar a integridade do sinal e a correspondência de impedância em vários intervalos de frequência. PCBs de alta velocidade requerem o uso de equipamentos avançados para testes extensivos de integridade de sinal para validar o desempenho a altas taxas de dados. O teste de PCBs multicamadas se concentra na funcionalidade e desempenho do circuito geral.

Conclusão

Com a evolução contínua da tecnologia de comunicação 5G, Os requisitos para placas de PCB em produtos de alta frequência estão aumentando. Por um lado, A transmissão de sinal de alta frequência exige perda dielétrica menor (Df) e constante dielétrica (Dk) Para garantir a transmissão estável de sinal. Por outro lado, À medida que os produtos avançam em direção à miniaturização e padronização, As placas de PCB estão inevitavelmente se movendo em direção às direções de camada alta e até HDI, Colocando maiores demandas na processabilidade do material. Portanto, seja da perspectiva de materiais de alta frequência ou alta velocidade, Éter polifenileno (PPO ou PPE) A resina mostra perspectivas promissoras de desenvolvimento e se tornará uma direção importante para futuros materiais de placa PCB de alta frequência e alta velocidade.

O que é teste de sonda voadora de PCB?

Printed circuit board testing is a critical aspect of Montagem da PCB, allowing us to identify major circuit issues and address them promptly. There are various methods for PCBA teste, including flying probe testing, AOI testing, fixture testing, etc.. This article will delve into the details of flying probe testing for PCBs.

What is Flying Probe Testing?

Flying probe testing is an electronic circuit testing method primarily used for testing printed circuit boards (PCBs). It employs a movable probe system that essentiallyfliesover the PCB, making electrical contact with specific test points on the PCB. Ultimately, it identifies defects and verifies the electrical performance of the circuit. The flying probe testing system consists of several key components, including the probes themselves, test fixtures used to secure the PCB in place, and control software to manage the testing process.

Structural Features of PCB Flying Probe Testing

The flying probe tester is an improvement over traditional bed-of-nails testers, utilizing probes instead of a bed of nails. It features four heads with a total of eight testing probes that can move independently at high speeds on an X-Y mechanism, with a minimum testing gap of 0.2mm. Durante a operação, the unit under test (Uut) is conveyed into the testing machine via belts or other UUT transfer systems, where the probes are then fixed to make contact with test pads and vias on the PCB, thereby testing individual components on the UUT. The testing probes are connected to drivers (signal generators, power supplies, etc.) and sensors (digital multimeters, Contadores de frequência, etc.) via a multiplexing system to test components on the UUT. While one component is being tested, other components on the UUT are electrically shielded by the probes to prevent reading interference. The flying probe tester can detect short circuits, open circuits, and component values. Adicionalmente, a camera is used during flying probe testing to aid in locating missing components and inspecting components with clear directional shapes, such as polarized capacitors.

Flying Probe Testing Capabilities

While flying probe testing can easily detect short circuits and open circuits, equipping them with special drivers enables them to test more complex parameters as well. Advanced probes can simultaneously probe and test both sides of multilayer boards, reducing the time needed for separate single-sided testing. Different architectures of flying probes can be used for various solutions, such as:

Signal Integrity Testing: Utilizing Time Domain Reflectometry (TDR) or Time Domain Reflectometer probes along with specialized instruments, various characteristics of PCB traces used for carrying high-speed and high-frequency signals can be tested. This setup typically captures and measures signals in both time and frequency domains to characterize defects in signal paths.

Phase Difference Measurement: Using specially designed probes to send high-frequency signals between reference traces and signal traces, the phase difference between them can be measured. This test eliminates the need for separate isolation testing to measure crosstalk between traces on the PCB.

High Voltage Stress Testing: PCBs may have insulation defects that conventional electrical tests may not detect. The insulation resistance between two traces on a PCB may be high enough to pass conventional resistance testing but still lower than the requirements in specifications. To detect this, high voltage stress testing is required, using a high voltage generator, appropriate probes, and high resistance meters.

Micro Short Circuit Detection: The presence of tiny whiskers can lead to micro short circuits on the PCB. Às vezes, they may burn off during high voltage stress testing, leaving behind carbonized residues on the PCB surface, forming high-resistance conductive paths. Micro short circuit detection probes apply low voltage to check the resistance between two traces on the PCB, gradually increasing the voltage to a level suitable for testing.

Kelvin DC Measurement: This is a highly precise DC measurement technique required for testing BGA and similar densely packed PCB patterns. It involves a force and sense pin in the flying probe. Kelvin connections compensate for losses in the testing probe.

Flying probe testing systems come in different sizes, with the main variable being the number of connectors the system uses. Por exemplo, a tester can have up to 16 connector heads, com 8 on the top and 8 on the bottom of the PCB. Claro, the cost of the system increases proportionally with the number of connectors it utilizes.

Advantages of Flying Probe Testing

Compared to traditional bed-of-nails or ICT fixtures, flying probe testing offers several advantages:

No Fixtures Required:Unlike bed-of-nails fixtures, flying probe testing doesn’t necessitate fixture setup. This saves the cost and time typically required for setting up ICT fixtures. Na verdade, manufacturers can set up flying probes immediately after the PCBs come off the production line, as they have access to Gerber data. Por outro lado, designing and installing ICT fixtures can take weeks.

Short and Fast Program Development: Since netlists and CAD data form the basis for generating flying probe test programs, and there are multiple open-source programs to translate this information, program development time is short and requires minimal setup time. This also means that design changes can be easily integrated.

Process Flexibility: Unlike ICT’s bed-of-nails fixtures, flying probe setups are applicable to any PCB, whereas ICT’s bed-of-nails fixtures are specific to individual PCBs and useless for another. Simple modifications to internal programs are all that’s needed to adapt them to another board.

No Need for Test Points: Since flying probe testing is conducted on bare boards, probes can utilize component pads without the need for additional test points.

Controlled Probe Contact: Flying probes can achieve precise connections at closer intervals compared to bed-of-nails. Por exemplo, high-precision flying probes can achieve testing gaps as small as 5 micrometers, while ICT’s minimum gap is 0.5 millimeters. This makes them highly useful for densely populated circuit boards or for achieving broader coverage on small PCBs.

Variable Testing Solutions and Methods: Flying probe systems can offer more testing solutions than ICT or bed-of-nails. This is possible because with programmable integrated test systems, various types of flying test probes can be utilized.

High Measurement Accuracy: Specific flying probes are employed for different tests, with precise probe positioning and complementary test instruments, ensuring high measurement accuracy.

Quick Feedback: Since flying probe test results can be obtained on-site, transmitting information to the production line can help them quickly make appropriate process adjustments. De forma similar, PCB designers can receive rapid feedback during prototype design, enabling them to make necessary changes before production.

How Flying Probe Testing Works

Flying probe testing (FPT) is typically the preferred method for small batch and prototype circuit board testing as well as PCB assembly due to its cost-effectiveness and convenience for these smaller quantities.

The main advantage lies in the ability to complete testing at speeds ranging from a few days to a few hours, depending on the complexity of the circuit board, even for larger quantities, and with high coverage of testing.

Let’s break down its operation into steps:

  1. Creating an FPT Test Program

The design aims to test the entire circuit board and is usually completed using an offline computer with an FTP test program generator application. This typically requires Gerbers, BOMs, and ECAD files. On a machine with a motherboard, define the values of the components to be tested, test points, component formats, offsets, debugging, etc., and ultimately finalize the design of the test program.

  1. Uploading the Program to the FTP Tester

The components of the circuit board to be tested are placed on a conveyor belt within the FTP tester and transported to the area where the probes are operated.

  1. Application of Electrical and Power Test Signals

These tests are conducted at probe points and then readings are taken. This process determines whether specific sections of the PCB meet the expected results (componentes). Any failures or deviations from the established plan and expectations indicate defects within the unit, resulting in a test failure.

Flying probe testing is a crucial technology in the electronics industry, ensuring the quality and functionality of electronic components and systems. These tests utilize specialized equipment to perform various contact and non-contact electrical tests on printed circuit boards (PCBs), printed wiring boards (PWBs), PCB assemblies (PCBAs), individual components, and entire systems. By providing a flexible and efficient method to identify defects and validate performance, flying probe testing has become an essential tool for manufacturers and engineers.

What are the colors of PCB?

The color of a PCB typically refers to the hue of the solder mask on the board’s surface. PCB board staining pigments are a type of hardened resin, with the primary resin being colorless or nearly transparent. Verde, as with other colors, is achieved through the addition of pigments.

We employ silk-screen printing to apply colors onto the PCB. PCBs come in various colors such as green, black, blue, yellow, purple, red, and brown. Some manufacturers have ingeniously developed PCBs in multiple colors like white and pink.

Physical Properties of PCB Colors

When selecting a PCB color, one must consider the physical properties of the PCB material. Typically composed of fiberglass and epoxy resin, PCB materials have densities, thermal conductivity coefficients, coefficients of thermal expansion, tensile strengths, and other physical attributes that directly impact performance and reliability. Different-colored PCBs may utilize varied production processes and materials, thereby exhibiting differing physical properties.

Chemical Properties of PCB Colors

In addition to physical properties, the color of a PCB also influences its chemical characteristics. PCB boards undergo heating and chemical treatments during production, and PCBs of different colors may require distinct chemical processes. This affects properties such as annealing temperature, acid and alkali resistance, and corrosion resistance. Some colored PCBs may employ more complex production processes and materials, resulting in enhanced chemical corrosion resistance.

Yellow PCB

Characteristics of Different Colored PCBs

  1. Green PCB

Green PCBs are the most popular color choice, enhancing clarity by providing a sharp contrast with white text, thus improving readability. Adicionalmente, the surface treatment of green PCBs reflects less light, aiding in reducing glare.

  1. White PCB

White PCBs present a clean and neat appearance in various settings, gaining popularity. No entanto, due to their tendency to obscure traces, white PCBs are not the top choice. Yet, the contrast with black silk-screen printing is notably distinct on white PCBs.

  1. Yellow PCB

Yellow PCBs cater swiftly to diverse requirements such as style, cleanliness, and visibility. No entanto, a significant drawback of yellow PCBs is their poor contrast with traces and silk-screen printing.

  1. Blue PCB

Blue PCBs are considered thick boards suitable for labeling due to their significant contrast in silk-screen printing. While not as attention-grabbing as green, black, or white PCBs, blue PCBs are preferred for their excellent aesthetic appeal. Installing blue PCBs on LCDs is preferable as they avoid sharp contrast edges and bright background colors.

  1. Red PCB

Due to its advantages, many PCB manufacturers are keen on adopting red PCBs. Red PCBs offer excellent visibility and clearly define the contrast of traces, aviões, and blank areas. Silk-screen printing appears particularly elegant against the backdrop of red PCBs.

  1. Black PCB

Black PCBs are as popular as white PCBs. Both colors produce low contrast, facilitating easy labeling of critical components. No entanto, the primary drawbacks of black and white PCBs are the potential focal points and minor shadows, making tracing difficult. Portanto, black PCBs are unsuitable for various high-temperature applications as they may cause silk-screen printing to discolor. Além disso, black PCBs are a blend of cobalt and carbon, potentially resulting in poor conductivity.

Black PCB

How pcb colors are made

The color of a PCB (Printed Circuit Board) is primarily achieved by applying a layer of special solder mask during the manufacturing process. Here are the general steps involved in producing PCB colors:

  1. During the manufacturing process of a PCB, a thin layer of copper foil is first laid on the substrate, forming the conductive layer of the PCB. If producing a double-sided or multilayer board, both sides or multiple layers of the PCB substrate will be covered with copper foil.

  2. Próximo, the designed PCB circuit pattern isprintedonto the metal conductor using a technique called subtractive transfer. In this process, the entire surface is covered with a layer of copper foil, and excess copper foil is removed through etching techniques to form the desired circuit pattern.

  3. After forming the circuit pattern, to separate the soldering and non-soldering parts of the PCB during soldering and prevent copper oxidation (pure copper surfaces quickly undergo oxidation reactions when exposed to air, and oxidized copper becomes a poor conductor of electricity, greatly damaging the electrical performance of the entire PCB), engineers apply a layer of solder mask on the surface of the PCB. This solder mask layer blocks the contact between copper and air, protecting the copper layer from oxidation.

  4. The color of the solder mask can be adjusted as needed. Since small text needs to be printed on the PCB, engineers typically add various colors to the solder mask to create different PCB colors. Por exemplo, black, red, blue, dark green, and dark brown are common PCB colors.

  5. After applying the solder mask, a series of post-processing steps such as hot air leveling, milling the outline, electrical testing, final inspection, etc., are required to ensure that the quality and performance of the PCB meet the requirements.

Why are most PCB green now?

The prevalence of green PCBs stems from several factors:

  1. Glass Epoxy Resin Material:

    • Historically, green was the standard color for the solder mask made from glass epoxy resin, which is commonly used in Manufatura de PCB. While other colors have been introduced, green remains the preferred choice.
  2. Contrast with White Printed Text:

    • Green PCBs offer simplicity and time efficiency for assembly workers, as scanning them is straightforward and quick due to their familiarity with the color. Adicionalmente, green creates less eye strain during scanning compared to other colors and provides contrast with white printed text on the circuit board.
  3. Military Applications:

    • Military standards have a significant influence on the preference for green PCBs. Many believe that green is highly effective for military purposes, leading to a demand for green PCBs from suppliers who also serve other clients. Consequentemente, green PCBs become surplus products for military suppliers, further reinforcing their acceptance.
  4. Exposure Rate of Solder Mask:

    • While other colors like blue, white, or brown exist, they may not offer a higher solder mask exposure rate compared to green. Darker colors tend to have higher pigment deposition, resulting in darker solder masks. White and black solder masks have high exposure rates, but green provides adequate shading for worker exposure and design tolerances.
  5. Better Machine Recognition:

    • During PCB manufacturing processes such as board fabrication and surface-mount component soldering, visual inspection is crucial. Green PCBs offer better visibility in yellow-lit environments, aiding machine recognition and calibration for tasks like solder paste application and automated optical inspection (Aoi).
  6. Comfort for Workers:

    • In some manual inspection processes (although increasingly replaced by automated testing), workers may observe PCBs under strong lighting. Green PCBs are more comfortable for the eyes in such conditions.
  7. Cost Reduction:

    • Green PCBs have widespread use, enabling economies of scale in production and procurement. Standardizing on one color reduces production line costs, as bulk purchasing of the same-color solder mask lowers procurement costs. Consequentemente, green solder mask is advantageous in terms of manufacturing costs and lead times.
  8. Relative Environmental Friendliness:

    • Green PCBs are relatively environmentally friendly, as they do not release toxic gases during high-temperature recycling of waste boards. Other PCB colors, such as blue and black, contain cobalt and carbon, which pose risks of short circuits due to weaker conductivity.

Adicionalmente, darker-colored PCBs, such as those in black, purple, or blue, may increase difficulty in board inspection and present challenges in manufacturing control.

The influence of PCB color on circuit boards is multifaceted. It affects not only the cost and appearance of the PCB but also directly impacts the physical and chemical properties of the PCB materials, thereby influencing the performance and reliability of the PCB. Portanto, when selecting PCB colors, it is necessary to consider a comprehensive range of factors such as the application environment, requirements, and costs of the product. Meanwhile, manufacturers need to enhance the quality and performance of PCBs through more sophisticated production processes and materials to meet the production needs of PCBs in different colors.

O status do substrato de embalagem na indústria de PCB

If the PCB industry were a pyramid, undoubtedly, the substrate would be the gleaming jewel perched at its apex.

Firstly, it holds immense importance.

The substrate is the core material in the chip packaging process, characterized by its high density, precision, performance, miniaturização, and thinness. It, along with the die and leads, forms the chip after packaging and testing. O Substrato IC not only provides support, heat dissipation, and protection for the chip but also serves as the electronic connection between the chip and the PCB, playing a pivotallinking and enablingrole, and can even embed passive or active devices to achieve certain system functions.

Segundo, its barriers are exceptionally high.

According to the minutes of the investor survey by Xinsen Technology, newcomers in the substrate field require at least 2 para 3 years to establish a team, acquire land and build factories, complete decoration and debugging, pass large customer certifications, and ramp up production capacity. Looking at the recent projects of domestic manufacturers in substrate production, the construction phase alone takes up to 2 anos, with several more years needed for capacity ramp-up. Além disso, projects involving high-end substrates like FC-BGA require even higher investment amounts due to the exorbitant equipment prices. Just consider, any random substrate project easily surpasses 2 billion yuan in investment, making it afighter jetin the industry’sburning moneybattle.

Aside from raising the investment threshold, the high processing difficulty is also a core barrier in substrate production. From the perspectives of product layers, board thickness, line width and spacing, and minimum annular width, substrates tend to lean towards precision and miniaturization. Além disso, with a unit size smaller than 150*150 mm, they represent a higher-end category of PCBs. Entre eles, the line width/spacing is the core differentiation, with the minimum line width/spacing of substrates ranging from 10 para 130 micrometers, far smaller than the 50 para 1000 micrometers of ordinary multilayer rigid PCBs. Ordinary PCB factories cannot handle such high-difficulty technical tasks.

Thirdly, its market prospects are incredibly vast.

With the rapid advancement of technology in the electronics industry, terminal application products are trending towards miniaturization, inteligência, and customization, making the demand for high-end PCB products more prominent. Além disso, driven by a new wave of computational power, China’s substrate supply fails to meet the robust market demand, presenting the industry chain with expansive market space.

From the global demand perspective of IC substrates, these products are primarily applied in fields such as CPUs, GPUs, and high-end servers.

Nos últimos anos, with the widespread application of technologies like 5G, Ai, and cloud computing, the demand for high-computational chips has been continuously increasing, thereby propelling the growth of substrate production value. This trend has stimulated a significant growth in the demand for chips and advanced packaging in the electronics industry, indirectly promoting the development of the global substrate industry.

In terms of market size, the Chinese substrate market reached 20.1 billion yuan in 2022, a year-on-year increase of 1.5%. According to forecasts from the China Industry Research Institute, por 2023, this market size will reach 20.7 billion yuan, with a growth rate of 3%. Simultaneously, the production volume of Chinese substrates has been increasing year by year. Em 2022, the production reached 1.381 million square meters, an 11.73% increase year-on-year. It is expected to reach 1.515 million square meters by 2023, with a growth rate of 9.7%.

Looking at the medium to long term, the IC substrate market is expected to maintain rapid growth. According to Prismark’s forecast, por 2027, the market size of IC substrates will reach 22.286 Bilhão de dólares americanos, with a compound annual growth rate (CAGR) de 5.10% between 2022 e 2027. It is estimated that by 2027, the overall size of China’s IC substrate industry will reach 4.387 Bilhão de dólares americanos, with a CAGR of 4.60% between 2022 e 2027.

The recent surge in Chiplet packaging technology has injected new vitality into the growth of IC substrates. The rapid growth in the market size of Chiplet processor chips will drive the demand for ABF substrates. Advanced packaging technologies will increase the consumption of ABF substrates, and the introduction of 2.5/3D IC high-end technologies into products may enter mass production in the future, inevitably bringing greater growth momentum.

Fourthly, its players are industry giants.

Currently, IC substrate companies from Japan, Coréia do Sul, and the Taiwanese region hold absolute leading positions. According to statistics from the Taiwan Printed Circuit Association, the top ten global substrate suppliers and their market shares in 2022 were as follows: Unimicron (17.7%), Nan Ya Printed Circuit Board (10.3%), Ibiden (9.7%), Samsung Electro-Mechanics (9.1%), Shinko Electric Industries (8.5%), JCET Group (7.3%), LG Innotek (6.5%), AT&S (6.1%), Daeduck Electronics (4.9%), and Compeq Manufacturing (4.7%).

The top five global BT substrate manufacturers were LG Innotek (14.2%), Samsung Electro-Mechanics (11.9%), Compeq Manufacturing (10.3%), JCET Group (9.5%), and Unimicron (7.7%). The top five global ABF substrate manufacturers were Unimicron (26.6%), Ibiden (14.6%), Nan Ya Printed Circuit Board (13.5%), Shinko Electric Industries (12.8%), and AT&S (8.0%).

Although China’s IC substrate industry started relatively late, strong players have emerged continuously. Major suppliers include Shennan Circuit, Xinsen Technology, and Zhuhai Youya, which primarily possess mass production capabilities for BT substrates. Além disso, since 2019, some manufacturers primarily engaged in PCB products have also begun investing in IC substrate projects, indicating a quietly evolving industrial landscape.

In conclusion, factors such as technological difficulty, industry players, investment barriers, market prospects, and critical roles have firmly established substrates at the forefront of the industry, rightfully earning them the title of the gleaming jewel atop the PCB pyramid.

Guia de operação de solda de onda para montagem de PCB

O que é soldagem por onda?

Soldagem por onda refere-se ao processo de formação de uma onda de solda de liga de solda derretida, normalmente usando uma bomba elétrica ou uma bomba eletromagnética, para atingir a altura de onda de solda desejada. Alternativamente, gás nitrogênio pode ser injetado no pote de solda para criar a onda. Durante a soldagem por onda, uma placa de circuito impresso (PCB) com componentes pré-montados passa pela onda de solda, formando um formato específico de filete de solda na superfície da solda líquida. Este processo, em que a placa de circuito impresso com componentes passa pela onda de solda em um ângulo específico e com uma certa profundidade de imersão para obter conexões de junta de solda, é chamado de soldagem por onda.

Desenvolvimento histórico da soldagem por onda

  1. Origem da soldagem por onda manual Solda por onda, como uma tecnologia de soldagem eletrônica, surgiu no início da década de 1960. Naquela hora, equipamento de solda por onda operado manualmente foi amplamente utilizado. Devido à sua estrutura simples, operação complexa, e baixa eficiência, a aplicação de equipamento de solda por onda manual foi um tanto limitada.

  2. Controle de automação de equipamentos de soldagem por onda no início dos anos 1970, equipamentos de solda por onda começaram a fazer a transição para o controle de automação. Com o desenvolvimento contínuo da tecnologia eletrônica, o equipamento alcançou gradualmente o controle de automação, melhorando significativamente a eficiência da produção. Durante este período, vários sistemas de controle automático para equipamentos de solda por onda, incluindo CLPs e microcontroladores, começou a aparecer.

  3. Digitalização de equipamentos de soldagem por onda desde o século 21, equipamentos de solda por onda têm avançado em direção à digitalização. A aplicação da tecnologia digital permitiu que equipamentos de solda por onda alcançassem maior precisão, qualidade mais estável, maior eficiência de produção, e redução de custos de produção. Em particular, a aplicação da tecnologia CAD em equipamentos de soldagem por onda resultou em efeitos de soldagem mais estáveis ​​e consistentes.

O princípio de funcionamento da soldagem por onda

O princípio fundamental da soldagem por onda é utilizar solda fundida para formar uma onda na superfície de solda.. O material de solda é aquecido e derretido à medida que passa pela onda, em seguida, entra em contato com a superfície de solda para criar uma junta de solda. A chave para a soldagem por onda reside no controle da temperatura e fluidez da solda para garantir a qualidade da junta.

  1. Formação de solda fundida: Inicialmente, a solda derretida é formada no recipiente de solda através da pressão da bomba, criando uma forma específica de onda de solda em sua superfície.

  2. Transporte de placa de circuito: A placa de circuito é transportada através da máquina de solda por onda em um transportador de corrente, passando pela zona de pré-aquecimento para garantir o controle de temperatura durante a soldagem.

  3. Processo de soldagem: À medida que a placa de circuito passa pela onda de solda em um determinado ângulo, seus pinos captam a solda da solda líquida, que solidifica durante o resfriamento para formar juntas de solda. A onda de solda molha a área de solda e se estende para preencher, facilitando o processo de soldagem.

  4. Qualidade de soldagem: A tecnologia de soldagem por onda é adequada para soldar uma variedade de metais e não metais, incluindo alumínio, cobre, aço, bem como plásticos, cerâmica, e outros materiais não metálicos. É amplamente utilizado em eletrônica, maquinaria, fabricação automotiva, e outros campos, proporcionando eficiência, rápido, e soldagem precisa para atender a alta precisão, alta confiabilidade, e requisitos de soldagem de alta qualidade.

O processo de soldagem por onda

O processo de soldagem por onda envolve as seguintes etapas:

  1. Preparação: Garantir a qualidade do PCB e dos componentes eletrônicos a serem soldados, e realizar os tratamentos de superfície necessários, como limpeza e remoção de óxido.

  2. Aplicação de pasta de solda: Aplique pasta de solda nas áreas de solda apropriadas na PCB, normalmente cobrindo as superfícies de contato dos pinos dos componentes e almofadas de PCB.

  3. Colocação de componentes: Monte com precisão componentes eletrônicos na PCB em locais predeterminados. Isso pode ser feito usando máquinas automatizadas de coleta e colocação ou métodos manuais.

  4. Configuração da máquina de solda por onda: Configure a máquina de solda por onda de acordo com os requisitos e especificações de soldagem, incluindo temperatura de soldagem, altura da onda, zona de pré-aquecimento, e velocidade de soldagem.

  5. Processo de soldagem: Mova a PCB montada através do sistema transportador até a área da onda de solda. A solda derretida na área da onda entra em contato com as almofadas da PCB e os pinos dos componentes, formando juntas de solda.

  6. Resfriamento e solidificação: Assim que o PCB sair da área da onda de solda, as juntas de solda são rapidamente resfriadas e solidificadas através de um processo de resfriamento, estabelecendo conexões de solda estáveis.

  7. Inspeção e controle de qualidade: Inspecione e execute verificações de controle de qualidade na PCB soldada, incluindo inspeção visual, Teste de raios-X, e testes de confiabilidade de juntas de solda, para garantir que a qualidade da soldagem atenda aos requisitos.

Guia de operação para equipamento de solda por onda

  1. Preparando-se para soldagem por onda

(1) Ligue a chave de alimentação principal de acordo com o cronograma de operação do equipamento e controle o tempo de troca do pote de solda através da válvula eletromagnética de tempo.

(2) Verifique se o indicador de temperatura do pote de solda está funcionando corretamente: Meça a temperatura em torno de 15 mm abaixo e acima do nível do líquido do pote de solda com um termômetro, e certifique-se de que a temperatura real definida permaneça dentro de uma faixa de ±5°C.

(3) Verifique o funcionamento do cortador de chumbo: Ajuste a altura da cabeça de corte com base na espessura do PCBA, visando comprimentos de pinos componentes entre 1.4 a 2,0 mm.

(4) Verifique o fornecimento normal de fluxo: Despeje o fluxo no fundente, ajustar a válvula de entrada de ar, e ative o fundente para verificar se há espuma ou pulverização de fluxo. Ajuste a taxa de fluxo para atender aos requisitos.

(5) Verifique a altura do nível de solda; se estiver abaixo de 12-15 mm do pote de solda, adicione solda imediatamente. Adicione solda em lotes, não excedendo 10 quilogramas de cada vez.

(6) Limpe a escória de solda da superfície da solda, e adicione antioxidante após a limpeza.

(7) Ajuste o ângulo do trilho de transporte: Ajuste a largura total do trilho de acordo com a largura total dos PCBAs a serem soldados, garantindo força de fixação moderada. Ajuste a inclinação do trilho com base na densidade dos pinos dos componentes soldados.

  1. Processo de inicialização para soldagem por onda

(1) Ligue o interruptor de fluxo, ajustando a espuma ajustando a espessura da placa para metade “eu” durante a formação de espuma. Para pulverização, certifique-se de que a placa seja simétrica, com volume de pulverização moderado, de preferência evitando a pulverização nas superfícies dos componentes.

(2) Ajuste o fluxo de ar da faca de ar para permitir que o excesso de fluxo na placa goteje de volta para a ranhura de espuma, evitando gotejamentos no pré-aquecedor que podem causar incêndio.

(3) Ligue a chave de transporte e ajuste a velocidade de transporte para o valor desejado.

(4) Ligue os ventiladores de resfriamento.

  1. Procedimento de soldagem pós-onda

(1) Desligue os interruptores do pré-aquecedor, onda de pote de solda, fundente, transporte, ventiladores de resfriamento, e cortador de chumbo.

(2) Durante a operação, substitua o fluxo na ranhura de espuma a cada duas semanas e meça regularmente.

(3) Após o desligamento, limpe bem a máquina de solda por onda e as garras, embeber os bicos em um solvente de limpeza.

Solda de onda

Vantagens e desvantagens da soldagem por onda

Vantagens:

Alta eficiência: A soldagem por onda pode soldar simultaneamente um grande número de componentes passantes, aumentando a eficiência da produção e a produção.

Qualidade de soldagem: Através do controle rigoroso dos parâmetros de soldagem, como temperatura, tempo de soldagem, e fluxo de fluxo de solda, soldagem por onda garante qualidade de soldagem estável.

Baixo custo: A soldagem por onda pode usar componentes e equipamentos padronizados, reduzindo custos de produção.

Desvantagens:

Limitações de componentes: A soldagem por onda só pode soldar componentes através do orifício e não pode soldar componentes de montagem em superfície.

Limitações de tamanho grande: A soldagem por onda requer que o PCB seja inclinado na palete de solda, portanto, existem certas limitações no tamanho e formato do PCB.

Dificuldade de manutenção: As máquinas de solda por onda requerem manutenção e limpeza regulares, o que pode ser desafiador.

Aplicações de soldagem por onda

A tecnologia de soldagem por onda tem sido amplamente aplicada em vários produtos eletrônicos, incluindo eletrônicos de consumo, equipamento de comunicação, computadores, e mais. Aqui estão as principais áreas de aplicação da soldagem por onda:

● Eletrodomésticos: A soldagem por onda tornou-se a principal tecnologia de soldagem na fabricação de eletrodomésticos, incluindo TVs, DVDs, aparelhos de som, e mais.

● Eletrônica Automotiva: A tecnologia de soldagem por onda tem sido aplicada em produtos eletrônicos automotivos, incluindo sistemas de entretenimento em veículos, sistemas de controle de segurança, etc., aumentando a confiabilidade e a segurança de produtos eletrônicos automotivos.

● Equipamento de comunicação: A tecnologia de soldagem por onda tem sido amplamente utilizada em equipamentos de comunicação, como estações base, roteadores, etc., permitindo projetos de circuitos de alta densidade e alta velocidade.

● Controle Industrial: A tecnologia de soldagem por onda tem sido aplicada no campo do controle industrial, incluindo CLPs, computadores industriais, etc., melhorando a confiabilidade e estabilidade do equipamento.

Desenvolvimento futuro da soldagem por onda

Com a tendência de miniaturização e produtos eletrônicos de alta densidade, a tecnologia de soldagem por onda está continuamente inovando e desenvolvendo. Aqui estão as direções de desenvolvimento futuro da soldagem por onda:

● Maior automação: O nível de automação das máquinas de solda por onda continuará a aumentar, incluindo automação de alimentação de componentes e fornecimento de líquido de solda.

● Melhor qualidade de soldagem: A qualidade da soldagem das máquinas de solda por onda continuará a melhorar, incluindo controle mais preciso dos parâmetros de soldagem, como temperatura, tempo de soldagem, fluxo de solda, etc..

● Inovação em Materiais de Soldagem: Com a crescente consciência ambiental, os materiais de soldagem usados ​​nas máquinas de solda por onda continuarão a inovar e melhorar, incluindo a adoção de solda sem chumbo e outros materiais ecológicos.

● Expansão das Áreas de Aplicação: A tecnologia de soldagem por onda será aplicada em mais produtos eletrônicos, incluindo casas inteligentes, a Internet das Coisas (IoT), etc..

Resumindo, como um importante Componente eletrônico tecnologia de soldagem, a soldagem por onda tem sido amplamente aplicada em vários produtos eletrônicos. Com contínua inovação e desenvolvimento tecnológico, desempenhará um papel cada vez mais importante no futuro.

Principal 8 Fabricantes de PCB na Tailândia

Como uma economia importante no sudeste da Ásia, Tailândia está atraindo ativamente o investimento de global Manufatura de PCB empresas. Atualmente, Muitos fabricantes de PCB da China, Coréia do Sul, Japão, E os Estados Unidos estabeleceram fábricas na Tailândia. De 2022 para 2027, A taxa de crescimento composto do valor global de saída da PCB foi sobre 3.8%. Espera -se que por 2027, o valor global de saída de PCB chegará a 98.388 Bilhão de dólares americanos. Esta tendência de crescimento global oferece um bom ambiente externo para o desenvolvimento da indústria de PCB tailandesa. Hoje vamos contar com o topo 8 Fabricantes de PCB na Tailândia.

1.Shennan Circuits Co., Ltd.

Shennan Circuits Co., Ltd. (a seguir referido como “SCC”), fundado em 1984 , está sediado em Shenzhen, Guangdong, China. Suas principais instalações de fabricação estão localizadas em Shenzhen, Wuxi e Nantong, Jiangsu, China. Seus negócios estão em todo o mundo, E há subsidiárias na América do Norte e r&D Sites na Europa.

Capacidade de fabricação

Unid Massa Amostra
Camadas 2~ 68L 120L
Máx. Espessura da placa 10mm (394mil) 14mm (551mil)
Min. Largura Camada interna 2.2mil/2.2mil 2.0mil/2.0mil
Camada externa 2.5/2.5mil 2.2/2.2mil
Registro Mesmo núcleo ± 25um ± 20um
Camada a camada ± 5mil ± 4mil
Máx. Espessura de cobre 6Oz 30Oz
Min. Dlameter do buraco da broca Mecânico ≥0,15 mm(6mil) ≥0,1mm(4mil)
Laser 0.1mm (4mil) 0.050mm (2mil)
Máx. Tamanho (Tamanho do acabamento) Cartão de linha 850mmx570mm 1000mmx600mm
Backplane 1250mmx570mm 1320mmx600mm
Proporção de aspecto (Fundo de acabamento) Cartão de linha 20:1 28:1
Backplane 25:1 35:1
Material FR4 Em827, 370Hr, S1000-2, IT180A, EM825YOUTS, IT158, S1000 / S1155, R1566W, Em285, TU862HF
Alta velocidade Megtron6, Megtron4, Megtron7, TU872SLK, FR408HR,Série N4000-13,MW4000, MW2000, TU933
Alta freqüência RO3003, RO3006, RO4350B, RO4360G2, RO4835, Clte, GENCLAD, RF35, Fastrise27
Outros Poliimida, Tk, LCP, Bt, C-Ply, Fradflex, Ómega , ZBC2000,
Acabamento superficial Hask, Concordar, Estanho de imersão, Osp, Silve de imersão, Dedo dourado, Eletroplicar ouro duro/ouro macio, OSP seletivo,Enepic

2.Kinwong Electronics

Kinwong Electronics

Estabelecido em 1993, A Jingwang Electronics é uma principal empresa de alta tecnologia do mundo em desenvolvimento, produzindo e vendendo pesquisa e desenvolvimento de alta tecnologia, Produção e vendas de materiais eletrônicos de alto end. Estabelecer 11 escritórios em todo o mundo para fornecer serviço instantâneo localizado da FAE.

Os produtos de Kinwong cobrem a PCB convencional, Flex PCB, PCB de base de metal, PCB rígido-flex, HDI PCB, Alta contagem de camadas PCB, Substrato como o PCB,RF PCB, Incrustação de cobre, etc.. Somos um dos poucos fabricantes domésticos que cobre placas de circuito rígidas, Placas de circuito flexíveis e placas de circuito de base metal. Kinwong fornece aos clientes competitivos, produtos confiáveis, soluções e serviços nas áreas de automóveis, Telecom, Computação, Terminal inteligente, Industrial & Médico, Fonte de energia e consumidor.

Capacidade de fabricação de placa de circuito convencional

Contagem de camadas: 2L/4L/6L/8L/10L
Máx. Tamanho do painel de entrega: 699mm × 594mm
Máx. Peso de cobre (Camada interna/externa): 12Oz
Espessura máxima: 5.0mm
Máx. Proporção de aspecto: 15:1
Acabamento superficial: LF-HASL, Concordar, Im-ag, Imm-sn, Osp, Enepic, Dedo dourado

3.Shengyi Electronics Co., Ltd.

Shengyi Electronics Co., Ltd. foi estabelecido em 1985. Está sediado na cidade de Dongguan, Província de Guangdong. É uma empresa nacional de alta tecnologia especializada em alta precisão, alta densidade, e placa de circuito de impressão de alta qualidade. A Shengyi Electronics fornece aos clientes uma solução de placa de impressão de uma parada de impressão, que é amplamente utilizado nos campos do equipamento de comunicação, carros, aeroespacial e outros campos.

Capacidade de tecnologia

Shengyi Electronics

4.Eletrônica APCB (Tailândia)

APCB INC. Fundado em agosto 1981, É uma fábrica de PCB para camadas múltiplas localizada em Taipei, Taiwan. Os principais projetos de PCB são produzidos principalmente por eletrônicos de consumo.
Depois de anos de trabalho duro através da equipe da APCB, seja desenvolvendo novas tecnologias ou investimentos em equipamentos avançados de produção, Expandimos com sucesso a capacidade de produção e a melhoria da qualidade. Fazendo isso, Podemos expandir nossa linha de produtos para várias aplicações, incluindo produtos eletrônicos, Acessórios relacionados ao computador, produtos de comunicação, etc..

Capacidade de tecnologia

5.Indústrias de circuito

As indústrias de circuito foram fundadas em 1990. É o principal fabricante da placa de circuito impresso (PCB) ou placa de circuito impresso (PWB) Na Tailândia, envolvido na fabricação de PCBs; PCB de alumínio e assim por diante. A empresa obteve a seguinte certificação: Ul Arquivo E-115789 Placa de circuito impresso seguro (PCB); ISO 9001:2015 Sistema de gerenciamento da qualidade; ISO 14001:2015 Sistema de Gerenciamento Ambiental; ISO 45001:2018 Sistema de Gerenciamento de Saúde e Segurança Ocupacional; Sistema de gestão da qualidade do fabricante de peças automotivas IATF 16949:2016; e tls 8001:2010.

Capacidade de tecnologia

Assunto

Pequeno volume

Volume de massa

Observações

Máx. Contagem de camadas 10 Camadas 10 Camadas Através do tipo de orifício apenas. Para Laminação Sequencial de HDI Max. 6 Camada
PTH aspecto da proporção 10 : 1 8 : 1 Espessura do material : Diâmetro da broca
Min. Tamanho da broca 0.15 mm 0.2 mm
Min. Espessura da placa (Final) 0.8 mm 0.8 mm
Máx. Espessura da placa (Final) 3.0 mm 3.0 mm Somente FR-4 multicamada
Min. Espessura pré -gravista 0.075 mm 0.075 mm
Min. Espessura acabada de cobre 1 Oz (35 μm.) 1 Oz (35 μm.)
Camada interna máx. Espessura acabada de cobre 2 Oz (70 μm.) 2 Oz (70 μm.)
Camada externa máx. Espessura acabada de cobre 3 Oz (105 μm.) 3 Oz (105 μm.)
Min. Espaçamento de linha (Camada interna) 0.1 mm (4 mil.) 0.125 mm (5 mil.) Maior espessura de cobre requer linha e espaço mais largos
Min. Espaçamento de linha (Camada externa) 0.1 mm (4 mil.) 0.125 mm (5 mil.)
Min. Anel anular 0.125 mm (5 mil.) 0.125 mm (5 mil.)
Precisão da broca (+/-) 35 μm. 35 μm.
Registro de camadas multicamadas (+/-) 35 μm. 35 μm.
Registro de marca de solda (+/-) 75 μm. 75 μm.
Derrota / Tolerâncias de pontuação (+/-) 0.2 mm 0.2 mm
Cego via SIM SIM Cego mecânico via
Cego por proporção 1:1 1:1 Via plug / Preenchido e tapado Não disponível
Enterrado via SIM SIM

6.Público de precisão da equipe

Precisão da equipe é Tailândia Ems e tem mais de 20 anos de experiência na indústria. A gama de serviços de fabricação inclui compras globais e vários tipos de montagem de produção via Internet, como a Assembléia Tongkou, Assembléia SMT, espaçamento fino BGA, Flip chip, Cobre (Chip-on-board) Conjunto de ambiente sem poeira, DE (DE- Ionizado) Limpeza de água, Encapsatação do composto químico, Construição de caixa e embalagem de varejo pronta para vender.

Capacidade de tecnologia

● 11 linhas SMT em 2 fábricas
● Através de máquinas de inserção de automóveis inteiras.
● Flip Chip Technology
● Chip-on-board (Cobre)
● Conjunto de circuito impresso flexível (FPCA)
● Na linha de inspeção passada de solda
● Na linha de inspeção óptica automática (Aoi)
● Inspeção de raios-X
● DI Limpeza de água
● Engrando de laser interna
● Casado conforme, por exemplo. Spray, Mergulho etc..
● Processo de envasamento, por exemplo. poli uretano ou epóxi etc.
● No circuito e teste funcional
● Queimadura estática na câmara
● Queimadura dinâmica na câmara
● Montagem completa do produto : Bunha-Build to Retail Packing Assembly
● Equipamento de análise de falhas
● Várias logística do serviço de atendimento de pedidos a serviços de armazenamento, por exemplo,.

● Remessa direta para os clientes finais, Entrega de leite no mercado no exterior, Hub para a região etc. Com monitoramento on -line.
● Kanban e a equipe Certified Lean-Sigma e IPC
● ROHS/Reach Compliance

7.BestTech Manufacturing

BestTech FabanGurn Co., Ltd foi originalmente estabelecido em 2003 e é uma pequena fábrica de serviço de fabricante de subcontratação eletrônica. A demanda por alta qualidade e giro rápido Montagem da PCB Serviços em Panyulan (Tailândia) foi reconhecido. É um fabricante de subcontratados que serve a indústria de eletrônicos. Ele usa tecnologia convencional ou híbrida para produzir módulos de montagem de superfície gratuitamente.

Capacidade de tecnologia

Tipo de material SS PCB DS PTH PCB multicamada
Laminado usado FR-1, FR-2, CEM-1, CEM-3, FR-4 CEM-3, FR-4 FR-4
Basan, Hitachi,Isola Basan,Shenyi, Kingboard Basan,Shenyi,Kingboard
Alto laminado CTI disponível Alto laminado CTI disponível Alto laminado CTI disponível
Laminado livre de halogênio Laminado de alto desempenho TG Laminado de alto desempenho TG
A pedido A pedido A pedido
Espessura geral 0.80mm a 2,00 mm 0.40mm a 2,00 mm , Máx. 2 Camadas 0.40mm a 2,00 mm , Máx. 4-16 Camadas
Espessura da folha de cobre 35um, 70um 35um, 70um, 105um 35um, 70um ,105 um
Imagem padrão Linha / Espaçamento 0,20mm Linha / Espaçamento 0,10mm Linha / Espaçamento 0,10mm
Máscara de solda UV, Pisr mediante solicitação Pisr Pisr
Tamura/Union/Taiyo/Coates Min. abrindo 0,10mm Min. abrindo 0,10mm
Coates, Taiyo, Peters, Vantico Coates, Taiyo, Peters, Vantico
Verde, Amarelo, Azul, Preto Verde, Amarelo, Azul, Preto
Lenda UV UV UV
Min. Largura do recurso 0,18 mm Min. Largura do recurso 0,18 mm Min. Largura do recurso 0,20mm
Dentificação do produto Código de semana impresso na lenda Código de semana impresso na lenda Código de semana impresso na lenda
PeelableMask Tamanho máximo do orifício de tenda 2,80 mm Tamanho máximo do orifício de tenda 2,80 mm Tamanho máximo do orifício de tenda 2,80 mm
Fabricação Tamanho mínimo do orifício para a broca NC 0,30mm, Para Punch 0,65mm Tamanho mínimo do orifício para a broca NC 0,25mm, Para Punch 0,30mm Tamanho mínimo do orifício para a broca NC 0,25mm, Para Punch 0,30mm
Vida útil mínima de ferramenta suave 200k Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k
Vida de validade de faculdade de ferramenta de endurecimento mínimo 150k FR-4 não recomendado para perfurar o buraco FR-4 não recomendado para perfurar o buraco
FR-4 não recomendado para perfurar o buraco Cut V está disponível Cut V está disponível
Cut V está disponível Chanfro está disponível Chanfro está disponível
Chanfro está disponível
Acabamento superficial Ni/Au eletrolítico PCB SS Concordar Concordar
Revestimento de fluxo de resina Revestimento Osp Revestimento Osp
Revestimento Osp Hal ou hasl Hal ou hasl
Roller lata no ss pcb, Hal no CEM-3, Produtos FR-4
Critérios de aceitação de produtos Siga os critérios de aceitação do IPC-A-600 Siga os critérios de aceitação do IPC-A-600 Siga os critérios de aceitação do IPC-A-600

8.Leadsin Technology Co.Ltd

LST é um provedor de serviços de solução EMS único que integra o PCBlayout, Manufatura de PCB, PCBA Solução e design de produto,Componente Componente, Smt, Dipe a montagem e o teste do produto acabado.

Temos uma rica experiência de fabricação e equipe técnica profissional para fornecer serviços de PCB para clientes globais, Nossos produtos cobrem automotivo, médico, Controle industrial, comunicação, Internet das coisas, eletrônica de consumo, garantia de qualidade e preço acessível.

Capacidade de tecnologia

Número de camadas 1-48 camadas
Materiais FR4, TG = 135150170180210, CEM-3, CEM-1, substrato de alumínio, Ptfe, Rogers, ONCO
Espessura de cobre 1/2Oz, 1Oz, 2Oz, 3Oz, 4Oz, 5Oz
Espessura da placa 8-236mil (0.2-6.0mm)
Largura/espaçamento mínimo da linha 3/3 milhão (75/75um)
Tamanho da perfuração minuto 8 milhão (0.2 mm)
Tamanho da broca de laser de HDI min 3 milhão (0.067 mm)
Tolerância à abertura 2 milhão (0.05 mm)
Espessura do cobre PTH 1 milhão (25 microns)
Cor de soldagem de resistência Verde, Azul, Amarelo, Branco, Preto, Vermelho
Camada de máscara de solda ripileira sim
tratamento de superfície Sangrar (Rohs), Ening, Osp, naufrágio de prata, lata afundando, ouro brilhante, dedos dourados
Espessura do ouro 2-30você “(0.05-0.76um)
Buraco cego/buraco enterrado sim
Corte em forma de V. sim

Guia detalhado para processamento de PCBA

O PCBA processing process covers the entire process from raw material procurement to finished product shipment, including SMT chip mounting, DIP plug-in processing, PCBA testing, three-proof coating, and finished product assembly. Each step strictly follows the process requirements to ensure the quality and performance of the final product. Neste artigo, we will detail the manufacturing process of PCBA, with the specific contents as follows.

SMT Chip Mounting Process

The process of SMT chip mounting includes: solder paste mixing → solder paste printing → SPI → mounting → reflow soldering → AOI → rework.

  1. Solder Paste Mixing

After taking the solder paste out of the refrigerator and thawing it, it is mixed manually or by machine to be suitable for printing and soldering.

  1. Impressão de pasta de solda

Place the solder paste on the steel mesh and use a scraper to print the solder paste onto the PCB pads.

  1. Spi

Spi, namely solder paste thickness detector, can detect the printing condition of solder paste, playing a role in controlling the effect of solder paste printing.

  1. Mounting

Various components are automatically mounted on the circuit board using machine equipment.

  1. Soldagem de reflexão

The assembled PCB board is reflow soldered, where the solder paste is heated to become liquid through high temperature inside and then cooled and solidified to complete the soldering.

  1. Aoi

Aoi, namely automatic optical inspection, can scan and detect the soldering effect of the PCB board, identifying any defects.

  1. Rework

Defects identified by AOI or manual inspection are reworked.

DIP Plug-in Processing Process

The process of DIP plug-in processing includes: plug-in → solda de onda → trimming → post-solder processing → cleaning → quality inspection.

  1. Plug-in

Process the pin of the plug-in material and install it on the PCB board.

  1. Solda de onda

Pass the assembled board through wave soldering, where liquid tin is sprayed onto the PCB board, and then cooled to complete the soldering.

  1. Trimming

The pins of the soldered board need to be trimmed if they are too long.

  1. Post-solder Processing

Manual soldering of components is performed using an electric soldering iron.

  1. Limpeza

After wave soldering, the board may be dirty and requires cleaning using cleaning solution and washing tank, or by using a cleaning machine.

  1. Inspeção de qualidade

Inspect the PCB board, and defective products need to be reworked before qualified products can proceed to the next process.

Teste de PCBA

PCBA testing includes ICT testing, Teste de FCT, aging testing, vibration testing, etc..

PCBA testing is a comprehensive process, and the testing methods adopted vary depending on the product and customer requirements. ICT testing checks the soldering of components and the continuity of circuits, while FCT testing examines the input and output parameters of the PCBA board to ensure compliance with requirements.

PCBA Three-proof Coating

The process of PCBA three-proof coating includes: brushing Side A → air drying → brushing Side B → room temperature curing. The spraying thickness is 0.1mm to 0.3mm. All coating operations should be carried out under conditions of not less than 16°C and relative humidity below 75%. PCBA three-proof coating is widely used, especially in harsh environments with high temperature and humidity. The coating provides excellent insulation, moisture resistance, leak resistance, shock resistance, dust resistance, corrosion resistance, anti-aging, anti-mildew, anti-loosening of components, and insulation against electric arcing. It can extend the storage time of PCBA, isolate external erosion, pollution, etc.. Entre eles, the spraying method is the most commonly used coating method in the industry.

Final Assembly

The PCBA boards that have been tested OK after coating are assembled into the outer casing, followed by testing, and finally ready for shipment.

PCBA production is a chain of processes, and any problem in any link can have a significant impact on the overall quality. It requires strict control over each process.

Overall, PCBA processing requires meticulous attention to detail and adherence to industry standards to produce reliable and high-quality electronic devices.

Medical pcb manufacturing process

As technology rapidly advances, the medical industry’s demand for electronic products is also growing. Among the various electronic components, PCBs undoubtedly play an indispensable role in medical devices. No entanto, the requirements and standards for PCBs in the medical industry far exceed those in other sectors. Why is this so? This article will explore the high demands and standards of the medical industry for PCBs. Neste artigo, we will discuss the manufacturing process of medical PCBs.

Importance of PCBAs in Medical Devices

  1. Precisão: Medical devices require a high level of precision to ensure accurate diagnosis and effective treatment. Any defects or errors in the circuit board could lead to equipment failure or provide incorrect information, posing serious risks to patientshealth.
  2. Reliability: Medical devices often need to operate in continuous working environments, placing high demands on the reliability of the circuit boards. Sudden equipment failures could result in surgery interruptions, data loss, or other medical accidents.
  3. Safety: Medical devices are directly related to patientslives and health, so the design and manufacturing of their circuit boards must comply with strict safety standards. This includes, but is not limited to, electromagnetic compatibility, overheat protection, and fire prevention.
  4. Miniaturization: Com avanços tecnológicos, many medical devices are pursuing smaller sizes and higher levels of integration. This requires circuit board designs to be more compact, with finer connections between components.

Material Selection and Performance

In the surface mounting process of medical device PCBA, the selection of PCB materials is crucial. Commonly used PCB materials include FR-4 (glass fiber reinforced epoxy resin), metal substrates (such as aluminum substrates), ceramic substrates, e assim por diante. Different materials have different performance characteristics, and it is necessary to choose the appropriate materials according to the operating environment and requirements of medical devices.

▶ Thermal Stability: Medical devices may operate in high-temperature environments, so the thermal stability of PCBs is crucial to avoid performance issues caused by thermal expansion and contraction in high-temperature environments.

▶ Mechanical Strength: PCBs need to have sufficient mechanical strength to prevent breakage during transportation, installation, or use, ensuring the stability and durability of medical devices.

Hierarchy Structure and Design Layout

Medical devices typically require high integration, so the hierarchy structure and design layout of PCBs are particularly important. A reasonable hierarchy structure and layout design can minimize signal interference, improve circuit stability, and reliability to the maximum extent.

▶ Layered Design: For complex medical devices, multi-layer PCBs can be used to distribute different functional modules on different layers, reducing signal interference and improving the circuit’s anti-interference ability.

▶ Reasonable Wiring: A reasonable wiring design can reduce signal transmission paths, decrease signal delay, increase signal transmission speed, and avoid interference caused by signal cross-talk.

Pad Design and Process Requirements

The design of pads on the PCB and the process requirements for surface mounting are closely related. Proper pad design and process can ensure a good connection between surface-mount components and the PCB, preventing soldering defects and cold joints.

▶ Pad Size and Spacing: Different sizes and types of surface-mount components require pads of appropriate size and spacing to ensure soldering stability and reliability.

▶ Pad Shape: Different shapes of pads are suitable for different types of soldering processes, such as Surface Mount Technology (Smt) and through-hole soldering technology. Choosing the appropriate pad shape can improve soldering efficiency and quality.

Medical PCB manufacturing

Manufacturing Process of Medical PCBA

  1. Design de PCB: Engineers use professional software to design the circuit board according to the requirements and specifications of the device. Once the design is completed, the Fabricante de PCB produces the bare board based on the design.

  2. Component Procurement: The procurement team purchases the required electronic components based on the Bill of Materials (Bom). These components may include resistors, capacitores, Indutores, ICS (integrated circuits), etc..

  3. SMT Mounting: Electronic components are precisely mounted onto the PCB using a pick-and-place machine. This process is automated to ensure speed and accuracy.

  4. De solda: Components are soldered onto the PCB using reflow soldering or other soldering methods.

  5. Teste e Inspeção: The completed PCBA undergoes quality inspection and functional testing using AOI (Inspeção óptica automatizada) equipment and other testing tools to ensure it meets design requirements and quality standards.

  6. Assembly and Encapsulation: The tested and qualified PCBA is assembled with other components (such as displays, batteries, etc.) to form a complete medical device.

Challenges and Trends in Medical Device PCBA

  1. Technological Challenges: With the continuous advancement of medical technology, the requirements for circuit boards in devices are also increasing. Por exemplo, many advanced imaging systems require processing large amounts of data, placing high demands on the transmission speed and processing capabilities of circuit boards.

  2. Regulatory Compliance: The medical device market is subject to strict regulatory oversight, and manufacturers must ensure that their products comply with various safety and performance standards. This requires PCBA manufacturers to have a high sense of responsibility and expertise.

  3. Supply Chain Management: Due to the uncertainty of the global supply chain and issues of component shortages, medical device manufacturers need to pay more attention to supply chain management and optimization to ensure production stability and cost-effectiveness.

  4. Sustainable Development: With the increasing environmental awareness, manufacturers need to consider sustainability issues in the manufacturing process, such as using environmentally friendly materials and reducing waste generation.

Medical PCBA is closely related to patient health, so it is essential to maintain the accuracy and stability of the equipment. Portanto, when choosing a medical PCB manufacturer, it is necessary to consider multiple factors. If you need medical PCBs, you can choose LST, com 16 years of experience in medical Manufatura de PCB and a professional team worthy of trust.

Development board manufacturing and application guide

Development boards are circuit boards used for embedded system development, comprising a series of hardware components including central processing units, memória, input devices, output devices, data pathways/buses, and external resource interfaces. Typically, developers of embedded systems customize development boards according to their development needs, or users can design them on their own. Development boards serve as a means for beginners to understand and learn about both the hardware and software of systems. Adicionalmente, some development boards provide basic integrated development environments, software source code, and hardware schematics. Common types of development boards include 51, ARM, FPGA, and DSP development boards.

The role of development boards:

Development boards serve as integrated platforms that facilitate embedded system development while reducing the barriers and risks associated with it. They play the following roles:

  1. Prototyping and validation: Development boards allow developers to quickly build prototypes of embedded systems and perform joint software and hardware debugging and testing to validate the functionality and performance of the system. They also simulate real-world environments, reducing uncertainties and risks during the development process.

  2. Application development: Development boards provide different hardware platforms and software support for various application needs, making it convenient for developers to create applications. They typically offer abundant peripheral interfaces and software libraries, enabling quick implementation of various application functions.

  3. Education and training: Development boards are also used for education and training, helping students and beginners understand the principles and development methods of embedded systems. They often have low costs and are easy to use, making them suitable for practical learning and experimentation.

  4. Enhancing learning efficiency: In terms of learning, development boards can effectively improve learning efficiency and shorten the development process.

Advantages of development boards:

  1. Rapid prototyping: Development boards assist developers in quickly designing prototypes and validating their designs efficiently.
  2. Easy portability: Development boards are highly versatile and can be easily ported to other hardware platforms.
  3. Abundant peripherals: Development boards typically offer a rich array of peripherals and interfaces, catering to diverse application scenarios.
  4. Cost-saving: Compared to designing and manufacturing hardware prototypes from scratch, using development boards can save on development costs.
  5. Default system and software support: Many development boards come with default system and software support, reducing the workload for developers.

Development board-4

Components of a Development Board

A development board is a complex assembly of multiple electronic components, each of which serves a specific purpose. The primary elements can be divided into several categories:

Microcontroller/Microprocessor
This component is the development board’s brain, running software programs and controlling other peripherals.

Memória
It includes both volatile (RAM) and non-volatile (Flash, EEPROM) storage for program code storage and execution.

Input/ Output (I/O) Interfaces
These make it possible for the board to communicate with other devices or parts. Examples include digital I/O, analog inputs, and communication interfaces such as USB, Uart, and SPI.

Manufacturing Process of Development Circuit Boards

  1. Determine the requirements and functionalities of the development board: Before making a development board, it’s essential to clarify its requirements and functionalities, including the needed interfaces, operating frequency, processor type, etc.. Only with a clear understanding of the board’s functions and requirements can the subsequent design and manufacturing proceed.

  2. Design the circuit schematic: Once the requirements and functionalities of the development board are determined, the circuit schematic needs to be designed. When designing the schematic, considerations must include the connection methods between various circuit modules, specific parameters of circuit modules, etc.. Professional circuit design software like Altium Designer, Protel, etc., is typically used for this process.

  3. PCB layout design: After completing the circuit schematic design, the PCB layout design follows. PCB layout design involves arranging components and traces from the circuit schematic onto the actual circuit board. Factors to consider during layout design include the board’s dimensions, distances between components, trace routing, etc.. Professional Design de PCB software like PADS, Altium Designer, etc., is used for this process.

  4. PCB board fabrication: Once the PCB layout design is completed, the designed PCB board needs to be fabricated. PCB board fabrication usually involves techniques like photolithography, gravura, etc., and the process needs to be conducted in a clean laboratory environment. The fabricated PCB board needs to undergo quality testing to ensure there are no issues like copper leaks, curtos circuitos, etc..

  5. Component soldering: After the PCB board fabrication, various components need to be soldered onto the PCB board. Soldering requires attention to factors like temperature, duration, etc., to ensure soldering quality. After soldering, testing is conducted to ensure good joint quality.

  6. Software programming: Once the hardware is completed, software programming is required. Software programming typically involves using programming languages like C, assembly language, etc., to write programs controlling various modules of the development board. The written programs need testing to ensure correctness and stability.

  7. Debugging and testing: After software programming, debugging and testing are conducted. This process involves using professional testing instruments and tools like oscilloscopes, logic analyzers, etc., to ensure the normal operation of the development board’s modules.

  8. Encapsulation and production: After completing debugging and testing, the development board can be encapsulated and put into production. Encapsulation involves placing the development board into a casing to protect it from external environmental influences. Production involves mass manufacturing of the development board to meet market demand.

Resumo:

Development circuit boards play a crucial role in the electronics manufacturing field, offering excellent solutions to challenges in electronic design. If you need development circuit boards, Entre em contato conosco.