Inscrições por Executivo

What are the processes of electric vehicle PCB assembly?

In the automotive intelligence, electrification process accelerated today, automotive electronic circuit boards PCBA as the core carrier of the automotive electronic system, the processing process is precise and complex, any one of the links are related to the performance, reliability and safety of automotive electronic equipment. This article we will give you a detailed introduction to the electric car pcba assembly process, all-round control of the quality of electric car pcba.

The role of pcb in electric vehicles

PCB is the backbone of electronic equipment, providing a physical platform for installing and interconnecting various electronic components. In electric vehicles, pcb has a wide range of uses, incluindo.

Battery Management System (BMS):The BMS monitors and manages the state of the battery to ensure optimal performance and safety. The system contains complex circuitry that requires high quality PCBs to efficiently handle power and data signals.
Power electronics: These include inverters, converters and chargers that manage the current between the battery and the motor. High-performance PCBs are essential to handle high currents and voltages.
Infotainment Systems:Modern electric vehicles are equipped with advanced infotainment systems that provide navigation, entertainment and connectivity. These systems rely on PCBs to seamlessly integrate various functions.
Sistemas avançados de assistência ao motorista (ADAS): Technologies such as adaptive cruise control, lane keeping assist and collision avoidance require reliable PCBs to process data from sensors and cameras in real time.

Electric Vehicle PCBA Assembly Process

Raw material preparation

Circuit board substrate procurement: first of all, according to the specific needs of automotive electronics, select the appropriate circuit board substrate materials. In view of the harsh environment inside the car, large temperature changes, strong vibration and electromagnetic interference, usually with high heat resistance, high mechanical strength, good electromagnetic compatibility of the substrate, such as special modified FR-4 board or high-performance flexible board. These substrates should meet strict industry standards to ensure stable operation under complex working conditions.

Selection and procurement of electronic components: According to the design of the automotive electronic circuit, we accurately screen all kinds of electronic components, incluindo resistores, capacitores, Indutores, fichas, etc.. The quality of the components directly determines the quality of the PC. The quality of the components directly determines the quality of the PCBA, so we must use products that meet the automotive-grade standards, with high reliability, wide temperature range adaptability and other characteristics. Purchased components need to undergo strict factory inspection to check the integrity of the appearance, the accuracy of the electrical parameters, to prevent defective products from entering the production line.

SMT Processing

Impressão de pasta de solda: Solder paste is printed onto the circuit board pads through high-precision stencils to ensure sufficient quantity and accuracy to avoid soldering defects. The stencil is laser cut or etched, and different pads correspond to different mesh holes in order to meet the packaging requirements of the components.

Smd: The components are quickly and accurately mounted onto the pads using high-precision mounting machines to ensure that tiny components such as 0201, BGA chips, etc.. are accurately aligned and pasted with solder paste.

Soldagem de reflexão: After the placement is completed, the temperature profile is precisely controlled through a multi-temperature zone reflow oven to ensure that the solder paste melts and solidifies uniformly, forming a high-quality solder joint, avoiding damage to components, and ensuring the reliability of the soldering.

THT Insert Processing (if required)

Some of the automotive electronics PCBA also involves through-hole technology (Tht) processing link. For some larger power, high mechanical strength requirements or not applicable to SMT components, such as large electrolytic capacitors, relés, etc., need to use THT technology.

Inserção: Workers will insert the pins of the components into the pre-drilled holes in the circuit board, requiring the insertion of the right depth, straight pins, to ensure a good connection with the circuit board and the inner layer of the line. This process requires manual operation combined with auxiliary tooling to ensure the accuracy and consistency of the plug-in.

Solda de onda: After the plug-in is completed, the wave soldering equipment is utilized for soldering. Liquid solder to form a wave-like shape, the circuit board from the wave through the peak, so that the component pins and circuit board pads are fully infiltrated welding. The key to wave soldering is to control the solder temperature, wave height and soldering speed to ensure that the solder joints are full, no false soldering, while avoiding short circuits and other problems caused by too much solder.

Inspection and debugging

Inspeção de aparência: Comprehensively inspect the PCBA appearance, check the missing components, offset, damage and defective solder joints and other issues, with the help of magnifying glass and other tools to ensure the quality of the appearance, to avoid potential safety hazards.

Electrical performance test: use professional equipment to test the PCBA electrical parameters, to confirm that the circuit connectivity, power module output and signal integrity in line with the design requirements.

Functional test: simulate the actual automotive environment, verify the actual working performance of PCBA through the test tooling to ensure its stable and reliable performance under various working conditions.

Three-proof processing

Considering the complexity of the automobile driving environment, automobile electronic PCBAs usually need three-proof (moisture-proof, mildew-proof, salt spray-proof) treatment. Special three-proof paint is used to form a protective film on the surface of PCBA by spraying, dipping or brushing to isolate the external moisture, mofo, salt spray and other unfavorable factors and prolong the service life of PCBA.

EV PCB assembly

PCB Manufacturing and Assembly Considerations for Electric Vehicles

Gerenciamento térmico: The power electronics in electric vehicles generate a lot of heat. To prevent overheating, manufacturers need to use high thermal conductivity materials (E.G.. cobre, substratos de alumínio) and advanced cooling technologies (heat sinks, hot channels, liquid cooling, etc.), and manage the coefficients of thermal expansion between different materials to avoid damages triggered by temperature changes.

Alta confiabilidade: EVs are often exposed to harsh environments such as vibration, temperature differences, moisture and dust, and PCBs must be highly reliable and durable. Manufacturers need to follow IPC standards (E.G.. IPC-A-600, IPC-A-610) and take protective measures such as revestimento isolante and encapsulation, and perform rigorous testing (temperature cycling, vibração, umidade, etc.) to ensure quality.

Miniaturização: PCBs are becoming increasingly miniaturized to fit compact vehicle designs, using HDI technology for microfabrication and multilayer stacking. Precision assembly and 3D Design de PCB software ensure compact layouts and stable signal and power distribution.

High power density: The high power requirements of electric vehicles require PCBs that support high currents, using thick copper layers and wide alignments to ensure stability and minimize losses in the power layer. Effective grounding, blindagem, insulation and safe distance design are also critical to ensure safety and EMI suppression.

Cost and Scalability: While pursuing high performance, manufacturers need to control costs and increase production flexibility. Automated production (Por exemplo, Aoi, Smt) can reduce labor costs and improve consistency. No entanto, there is still a need to balance innovation, cost and scale in the context of rapidly evolving technology.

Compliance with industry standards: Manufacturers must follow industry standards such as ISO 16750, CIP, and others to ensure that PCBs meet requirements for safety and performance. Compliance requires complete documentation, validation and process adjustments to adapt to changing regulations.

The Future of PCB Assembly for Electric Vehicles

The future of EV Montagem da PCB is bright, and the following trends are driving change in the industry:

Convergence of AI and IoT: As Artificial Intelligence (Ai) E a Internet das Coisas (IoT) are increasingly used in EVs, the demand for high-performance PCBs increases. These advanced technologies require powerful processing and connectivity capabilities, driving the continued evolution of PCB design and assembly towards greater integration and intelligence.

Sustainable Manufacturing: Sustainability is increasingly in the spotlight, and environmentally friendly Manufatura de PCB processes are gaining more attention. Lead-free soldering, recyclable substrates, and energy-efficient production processes are all important initiatives to promote green manufacturing.

Growing demand for customization: The increasing diversity of electric vehicle models and features is increasing the demand for customized PCBs. Manufacturers need to provide flexible and customized solutions to meet the specialized requirements of different platforms and application scenarios.

Collaboration and standardization: Collaboration between OEMs, electronics manufacturers and industry standards organizations is driving standardization in PCB design and production. Standardization helps streamline production processes and ensures interconnectivity and compatibility between systems.

leadsintec’s excellent pcba partner for automotive electronics

LST specializes in automotive electronic circuit board PCBA processing field, with advanced production equipment, from high-precision solder paste printing machine, top-class mounter to precision reflow oven, professional testing instruments, to ensure that each processing step can meet the automotive quality standards. The company’s technical team is experienced and familiar with the automotive electronics industry specifications, providing one-stop PCBA processing services. Ao mesmo tempo, strict quality control system throughout the production process, through multiple rounds of testing and debugging, to ensure the delivery of each piece of automotive electronics PCBA has a high degree of reliability, for the booming development of the automotive industry escort.

O que é parceiro ems

Indústria 4.0 is profoundly reshaping the way products are designed, manufactured and delivered. Serviços de fabricação eletrônica (Ems) is playing an increasingly strategic role in this wave, providing integrated manufacturing and assembly services for a wide range of electronic components and devices, enabling Original Equipment Manufacturers (OEMs) to focus on their core business of design, innovation and marketing without having to invest huge amounts of money in building their own production lines.

EMS partners, represented by LST, are able to provide OEM customers with efficient manufacturing solutions that enable them to meet the challenges of complex electronics manufacturing while reducing initial capital expenditures and achieving flexible and efficient market response.

What is EMS?

Ems (Serviços de fabricação de eletrônicos) is a business model in which a third party provides electronics-related manufacturing services to brand manufacturers or original equipment manufacturers (OEMs), not only providing printed circuit board assembly (PCBA), but also covering the entire manufacturing process, from component sourcing, teste, machine assembly, logistics and distribution to after-sales support. EMS vendors not only provide printed circuit board assembly (PCBA), but may also cover the entire manufacturing process from component procurement, teste, complete machine assembly, logistics and distribution to after-sales support.

What is an EMS Partner?

An EMS Partner is a professional outsourcing service provider that has established an in-depth relationship with brands in the field of Electronic Manufacturing Service (Ems). These partners help brands focus on core R&D and sales, while reducing costs and improving efficiency by providing a full chain of services from product design, fabricação, supply chain management to logistics and distribution.

EMS Partner Core Services

1.Manufacturing and Supply Chain Management
Design de PCB e produção: Provide one-stop service from PCB design to SMT placement and assembly.
Component Sourcing: Reduce costs through large-scale sourcing and manage supplier network.
Quality control: Implement ISO 9001, IATF 16949 (eletrônica automotiva) and other certification standards to ensure product yield.

2.Logistics and Distribution
International Express Mail Service (Ems): Por exemplo, China Post EMS covers 200+ countries and regions, provides services such as insured price, customs clearance on behalf of customers, and exempts fuel surcharge for some routes.
Intelligent warehousing: using RFID technology to achieve full tracking of parcels and optimize sorting efficiency (E.G.. Beijing Post EMS shortens distribution time by 30% through automated equipment).

3.Value-added services
After-sales service: support payment collection, 24-hour online customer service and after-sales feedback mechanism.
Customized solutions: adjust the production line according to customersneeds and support small-lot, multi-variety flexible manufacturing.

EMS Partner Manufacturing

EMS Partner Manufacturing

The working mode of EMS

In the EMS (Serviços de fabricação eletrônica) model, a strategic partnership is established between the original equipment manufacturer (OEM) and the EMS service provider. the OEM is usually responsible for the design of the product and the development of key performance indicators (KPIs) for the design cycle, while the EMS partner is responsible for the execution of the entire production process. Este processo, from component sourcing and Manufatura de PCB to finished product assembly and functional testing, is completed by the EMS. The service content can be flexibly adjusted according to different projects, covering from small-volume prototyping to large-scale mass production.

The main aspects of EMS services include:

Manufatura de PCB: Producing printed circuit boards (PCBs), which are the core building blocks of electronic devices, to provide the electrical connection basis for the products.

Component Sourcing: Sourcing high quality electronic components from reputable suppliers to ensure product performance and consistency.

Assembléia PCBA: Precision soldering of electronic components to circuit boards using methods such as SMT (Tecnologia de montagem de superfície) e THT (Through Hole Technology).

Prototyping and Testing: Constructing product prototypes and conducting comprehensive testing to verify functional integrity and long-term reliability.

Complete Assembly: Performs “box build”, ou seja, integrating the PCBA with the housing, buttons, cabos, and other components to form the final product.

Gestão da cadeia de abastecimento: Manage the entire logistics chain from raw material procurement to finished product delivery to ensure the optimal balance of lead time and cost.

Design for Manufacturing (DFM) Optimization: Collaborate with OEMs during the product design phase to optimize the structure to improve production efficiency and reduce manufacturing costs.

Industries that can choose EMS Partner Manufacturing

EMS Partner Manufacturing is universally applicable and beneficial to businesses of all sizes and in a variety of industries. From startups to multinational giants, any business can use EMS to optimize their manufacturing processes.

OEM: Original Equipment Manufacturers (OEMs) that design and sell their own branded products EMS providers such as PCI enable OEMs to focus on core competencies such as product development and marketing, while ensuring high quality manufacturing.
ODM: Original Design Manufacturers design and manufacture products that are then labeled and sold by other companies.EMS providers offer ODMs the flexibility to scale up production in response to market demand.
Startups and Small Businesses:These entities often lack the resources to build in-house manufacturing capabilities.EMS partners provide a cost-effective way to bring innovative products to market.
Research Institutions: Research-focused organizations can benefit from EMS expertise to manufacture specialized equipment for technological advancement.

Resumo

EMS Partners help brands achieve “asset-light” operations through specialized division of labor, while becoming an indispensable link in the electronics industry chain by leveraging technology, cost and global network advantages. For companies that need to expand rapidly or focus on innovation, choosing EMS Partner is a key strategy to enhance competitiveness.

Escolha LeadSintec como seu parceiro flexível de fabricação de PCB

The manufacturing of flexible printed circuit boards (CPFs) is a multidisciplinary field that integrates material science, precision machining and electronic engineering. Its technological evolution has directly promoted innovation in industries such as consumer electronics, equipamento médico, e eletrônica automotiva. Leadsintec is a professional flexible Manufatura de PCB and assembly company. We have a professional design and processing team to meet all customer needs. Let’s take a look at our manufacturing capabilities.

Exceptional Flexible PCB Manufacturing Capability

Layer Configurations

LSTPCB offers a wide range of flexible circuit board configurations to meet the diverse demands of various industries for circuit complexity and mechanical flexibility:

  • Single-Layer Flexible PCBs: Our single-sided flexible circuits feature a conductive copper layer on a high-performance flexible dielectric substrate. They are optimized for simple designs, offering excellent bendability and cost efficiency. These lightweight structures ensure electrical reliability while enabling dynamic flexing.

  • Double-Layer Flexible PCBs: This configuration includes two conductive copper layers separated by a polyimide insulating layer, typically interconnected through plated through holes. It allows for increased circuit density without compromising flexibility.

  • Multi-Layer Flexible PCBs: We produce 4-layer flexible PCBs tailored for highly integrated systems such as wearable devices, monitores flexíveis, medical sensing modules, and advanced automotive electronics.

  • Advanced Multi-Layer Designs: LSTPCB can manufacture 6-layer flexible circuits that balance precision signal routing with effective power distribution, ideal for high-performance systems with limited space. Our 8-layer flexible PCBs represent the leading edge of flex circuit technology, offering superior multifunctional integration and compact packaging.

  • Rigid-Flex PCBs: As a UL-certified rigid-flex PCB manufacturer, LSTPCB offers hybrid structures with up to 32 rigid layers and 12 flexible layers. These boards combine the stability of rigid substrates with the bendability of flex layers, making them ideal for complex 3D interconnect designs in aerospace, defesa, and premium consumer electronics.

Vantagens técnicas

Our expertise in PCB flexível manufacturing encompasses the following core capabilities:

  • Fine-Line Processing: We achieve line/space widths as narrow as 25μm on multi-layer flexible materials, with layer-to-layer alignment accuracy within ±50μm.

  • Premium Material Selection: We use high-grade materials such as polyimide and specialty thermoplastics to ensure stability and durability in a wide range of applications.

  • Bend Reliability Design: We account for critical minimum bend radius requirements to enhance product lifespan under dynamic bending conditions.

  • Custom Stack-Up Solutions: From basic single-layer to complex 8-layer configurations, we provide optimized stack-ups tailored to specific application needs.

  • Diverse Surface Finishes: We offer a variety of surface treatments including ENIG (Ouro de imersão em níquel eletrolítico), lata de imersão, and others to protect exposed copper and enhance solderability.

Nossas capacidades de fabricação

Item Descrição
Camada Flexible board: 1-12Camadas
Flex-Rigid Board: 2-32Camadas
Material

Pi, BICHO DE ESTIMAÇÃO, CANETA, FR-4,dupont

Stiffeners

FR4, Alumínio, Poliimida, Stainless Steel

Final Thickness Flexible board: 0.002″ – 0.1″ (0.05-2.5mm)
Flexible-rigid board: 0.0024″ – 0.16″ (0.06-4.0mm)
Tratamento de superfície Sem chumbo: ENG Gold; Osp, Prata de imersão, Estanho de imersão
Máx / Min Board Size Min: 0.2″x0.3″ Max: 20.5″x13″
Min Trace
Largura / Min Clearance
Interno: 0.5Oz: 4/4mil Outer: 1/3Oz-0.5Oz: 4/4mil
1Oz: 5/5mil 1oz: 5/5mil
2Oz: 5/7mil 2oz: 5/7mil
Min Hole Ring Interno: 0.5Oz: 4mil Outer: 1/3Oz-0.5Oz: 4mil
1Oz: 5mil 1oz: 5mil
2Oz: 7mil 2oz: 7mil
Espessura de cobre 1/3oz – 2oz
Máx / Min Insulation Thickness 2mil/0.5mil (50um/12.7um)
Min Hole Size and Tolerance Min hole: 8mil
Tolerance: PTH±3mil, NPTH±2mil
Min Slot 24mil x 35mil (0.6×0.9mm)
Solder Mask Alignment Tolerance ±3mil
Silkscreen Alignment Tolerance ±6mil
Silkscreen Line Width 5mil
Gold Plating Nickel: 100u” – 200u” Gold: 1u”-4u”
Immersion Nickel / Gold Nickel: 100u” – 200u” Gold: 1u”-5u”
Imersão Prata Silver: 6u” – 12u”
Osp Film: 8u” – 20u”
Test Voltage Testing Fixture: 50-300V
Profile Tolerance of Punch Accurate mould: ±2mil
Ordinary mould: ± 4mil
Knife mould: ±8mil
Hand-Cut: ±15mil

Flexible PCB Manufacturing

Flexible PCB Manufacturing Process

At Leadsintec, the flexible Processo de fabricação de PCB consists of a series of sophisticated and tightly controlled steps, forming a precise production chain from raw materials to finished products:

1. Substrate Preparation

  • Seleção de Materiais: Poliimida (Pi) is the primary substrate material due to its excellent heat resistance (up to 400°C), estabilidade química, and mechanical flexibility—suitable for most application scenarios. Liquid Crystal Polymer (LCP), with its low dielectric loss (Dk = 2.85 at 1GHz), is preferred for high-frequency 5G applications.

  • Tratamento de superfície: Plasma cleaning or chemical etching is used to increase the surface energy of the substrate, improving copper foil adhesion.

2. Copper Lamination & Transferência de padrão

  • Deposição de cobre: A sputtering followed by electroplating process is used to create an ultra-thin seed copper layer (grossura <1μm), eliminating the thickness limitations of traditional lamination methods.

  • Photolithography: Dry film photoresist is applied, and high-precision pattern transfer is achieved using Laser Direct Imaging (Ldi), enabling 50μm line width/spacing. After development, the resist protects desired copper areas.

3. Gravura & Laminação

  • Gravura Química: Acidic cupric chloride solution removes unprotected copper. Etch rate control is critical, as polyimide and FR-4 materials have up to 15% difference in etching behavior, requiring compensation to avoid undercutting.

  • Multilayer Lamination: Automated hot presses are used to bond layers under controlled temperature (180–220°C) e pressão (30–50 kg/cm²) gradients, effectively managing CTE (Coefficient of Thermal Expansion) mismatches.

4. Perfuração & Metalização

  • Perfuração a Laser: Ultraviolet (UV) laser (355nm wavelength) are used to create 50μm microvias without inducing mechanical stress, as seen with mechanical drilling.

  • Via Metallization: Electroless copper plating forms a 0.5–1μm conductive layer, ensuring reliable interlayer electrical connections.

5. Acabamento superficial & Proteção

  • Concordar (Electroless Nickel/Immersion Gold): Provides excellent solderability and corrosion resistance. Thickness is precisely controlled: Ni 3–6μm / Au 0.05–0.1μm.

  • Coverlay Application: Heat-laminated polyimide coverlays (25μm with adhesive) are applied, with laser window opening precision reaching ±25μm.

6. Perfil & Teste

  • Laser Cutting: UV laser systems ensure clean, burr-free cutting of complex board outlines.

  • Teste de confiabilidade: Includes dynamic bend testing (100,000 cycles from 0° to 180°), thermal shock cycles (-40°C a 125 °C, 1000 ciclos), and signal integrity testing (TDR impedance control within ±10%).

Flexible PCB Manufacturing Process

Cross-Industry Applications

Leadsintec’s flexible printed circuit boards (Flex PCBs) are driving innovation across a wide range of industries:

  • Dispositivos médicos: Implantable electronics, wearable health monitors, diagnostic systems

  • Eletrônica Automotiva: Engine control units, dashboard displays, sensor networks

  • Eletrônica de consumo: Smartphones, câmeras digitais, wearable tech

  • Aeroespacial & Aviação: Satellite systems, aircraft control panels, navigation instruments

  • Automação Industrial: Control systems, sensor modules, interface boards

  • Telecomunicações: Networking equipment, mobile devices, transmission systems


Advantages of Leadsintec Flex PCBs

Choosing Leadsintec for your flexible circuit needs brings a host of clear benefits:

  • Space and Weight Savings
    By eliminating the need for traditional connectors and ribbon cables, our flexible and rigid-flex PCBs dramatically reduce overall system size and weight. This allows for more compact, efficient internal layouts—ideal for devices where slim and lightweight design is critical.

  • Confiabilidade aprimorada
    Flexible circuits minimize physical interconnects between components, lowering the risk of failure points. This enhances the durability and reliability of the system, while also allowing for easier modifications to adapt to evolving design requirements.

  • Superior Design Freedom
    With advanced 3D routing capabilities, circuits can be precisely shaped to fit non-standard geometries. Shorter signal paths and better impedance control are achieved, making our solutions ideal for spatially constrained and complex structures.

  • Outstanding Thermal Management
    Compared to traditional rigid boards, our flexible PCBs offer improved heat dissipation, helping maintain thermal stability under continuous operation.

  • Exceptional Vibration Resistance
    The inherent flexibility of our materials reduces mechanical stress on solder joints, ensuring excellent durability and performance even in high-vibration or harsh operating environments.

  • Cost-Effective Performance
    While initial costs may vary for highly customized or low-volume designs, our mature production processes and scalable manufacturing capabilities ensure highly competitive overall value for our clients.

Quality Assurance and Certifications

At Leadsintec, we adhere to rigorous quality control protocols throughout the entire manufacturing process:

  • UL-Certified Production for Both Rigid and Flexible PCBs

  • ISO-Compliant Quality Management System

  • Comprehensive Environmental and Reliability Testing

  • Strict Electrical Performance Validation

  • Customer-Centric Engineering Approach

At Leadsintec, we understand that flexibility and strong client relationships are just as critical as advanced engineering. We offer premium, customized engineering and manufacturing services tailored to specific requirements—from rapid prototyping of single units to high-volume production runs.


Conclusão

With nearly two decades of expertise in flexible PCB manufacturing, Leadsintec delivers world-class flexible circuit solutions that combine innovative design, precision engineering, and exceptional reliability. Our comprehensive capabilities—from basic single-layer circuits to advanced multilayer and rigid-flex configurations—empower clients across industries to push the boundaries of electronic product development.

Partner with Leadsintec for your flexible PCB needs and experience the perfect balance of cutting-edge technology and customer satisfaction.

2oz copper PCB introduction and application guide

Placas de circuito impresso (PCBs) are a key component of electronic devices, both providing physical support for electronic components and enabling electrical connections. Among the many technical parameters of a PCB, the thickness or weight of the copper foil is particularly critical and is often expressed in ounces per square foot (oz/ft²). While 1oz copper foil is a common standard in traditional applications, 2oz copper PCBs are becoming increasingly popular as the performance needs of electronic devices increase.

Neste artigo, we’ll take an in-depth look at what the actual thickness of 2oz copper foil means in a PCB, explain why it’s growing in popularity in today’s electronic designs, plus we’ll sort through the key benefits that 2oz copper brings to the table, the applications for 2oz copper pcb’s, and introduce some design guidelines to help maximize its performance.

What is 2oz copper thick pcb

A 2oz copper thick PCB is a printed circuit board (PCB) with a copper foil thickness of 2 onças (Oz). Below is a detailed description of 2 ounce copper thick PCBs:
In the PCB industry, copper foil thickness is measured using ounces (Oz) as a unit, com 1 oz copper thickness indicating the thickness achieved by evenly distributing 1 Oz (approximately 28.35 gramas) weight of copper foil over a 1 square foot area.
A 1oz copper thickness equals approximately 35 microns (1.4 Mils), so a 2oz copper thickness is approximately 70 microns (2.8 Mils).

Basic Properties of 2oz Copper PCBs

High Conductivity: The increased thickness of the copper foil increases the ability of the line to carry a significant amount of current (formula: I ∝ h, h is the copper thickness) and reduces resistance losses.
Excellent heat dissipation: thick copper layer can quickly export heat, preventing components from overheating, extending the life of the equipment.
Alta resistência mecânica: strong resistance to bending, pulling and impact, adapting to complex industrial environments.
Classification difference: the production process is different between regular thick copper boards (≤3OZ) and ultra-thick copper boards (3-12Oz), with the latter requiring high-precision copper foil selection, special press-fit technology and enhanced etching process.

Why choose 2oz copper PCB?

High Current Carrying Capacity
Equation derivation: Line loadable current I is directly proportional to copper thickness h (I ∝ h), and heat generation Q is inversely proportional to copper thickness h (Q ∝ 1/h).
Practical application: In high power scenarios such as power modules and motor drives, 2oz copper PCBs can reduce resistance loss and improve system efficiency.

Thermal Management Optimization
The thick copper layer acts as a “cooling channel” to quickly transfer heat to the heat sink or enclosure to avoid localized overheating.
Case in point: automotive engine control systems are exposed to high temperatures for long periods of time, and 2oz copper PCBs ensure circuit stability.

Mechanical Reliability
Shock resistance is improved by more than 30%, suitable for industrial equipment or automotive electronics with frequent vibration.

2oz copper PCB

2oz copper PCB

Core Application Areas

Eletrônica Automotiva
Control modules, engine control systems, airbags and other critical components need to withstand high temperatures, corrosion and mechanical stress.

Poder & Energy
Módulos de potência, DC-DC converters, solar inverters, etc., need to handle high power conversion and distribution.

Automação Industrial
High-power motor drives and automation equipment control require circuit boards with high conductivity and durability.

Emerging Fields
High-end products such as 5G base stations, Servidores de IA, etc., have stringent requirements for PCB layers, precision and heat dissipation performance.

Design Recommendations for 2oz Copper PCBs

In order to fully utilize the advantages of 2oz copper foil thickness in circuit board design, design engineers should consider the following layout and wiring guidelines:

Reasonable use of space: 2oz copper supports finer line widths and spacing, allowing for a more compact device layout. Components can be appropriately dispersed during design to fully utilize the extra space.

Shorten wiring paths: Because 2oz copper has lower resistivity, there is less reliance on wider alignments, and shorter, more direct connections can be prioritized.

Optimize layer structure: Lower current densities allow for fewer board layers when the layout permits. No entanto, sufficient power and ground layers need to be maintained to ensure stability.

Reduced via size: Thanks to the high resolution capability of 2oz copper, smaller via designs can be used while maintaining good wiring density.

Increased component integration: Thinner copper wires make it easier to connect small package components, thereby increasing overall component density.

Controlling High Frequency Impedance: For high frequency applications, ensure that thin copper traces are routed as short as possible to avoid signal integrity issues caused by long or narrow traces.

Reduce thermal structure: If conditions permit, remove some heat sinks to reduce overall thermal resistance.

Increase copper-filled areas: Enhance heat dissipation efficiency and electromagnetic interference (Emi) shielding effect through reasonable copper surfacing, while maintaining a safe distance from signal lines.

Avoid excessive fragmentation of planar layers: Minimize fragmentation of the power and ground layers and improve continuity through multi-point over-hole connections.

Focus on edge spacing: Under high-precision etching processes, special attention needs to be paid to the alignment gap at the edge of the board to avoid processing defects.

Optimize design rules: Tighten the design grid and DRC (Design Rule Check) parameters to accommodate the manufacturing capacity of 2oz copper boards.

Pay attention to pad-via-hole matching: In high-density wiring, ensure that the design of pads and vias meets reliability requirements to avoid soldering problems.

Through rational layout and standardized wiring strategies, 2oz copper PCBs can not only effectively reduce board size, but also significantly improve electrical performance and help control manufacturing and assembly costs!

Resumo

With its high conductivity, thermal performance and mechanical strength, 2oz copper PCBs have become the first choice for high-power, high-reliability electronic devices. With the rapid development of automotive electronics, new energy and AI fields, its market demand will continue to grow. The design and manufacturing process needs to focus on line compensation, process optimization and thermal design to ensure product performance and yield. No futuro, intelligent production and the application of environmentally friendly materials will further promote the technological innovation and industrial upgrading of thick copper PCB.

Qual é o processo de montagem da PCB?

Como todos sabemos, placa de circuito impresso (PCB) é um componente essencial indispensável em dispositivos eletrônicos modernos, enquanto a montagem da placa de circuito impresso (PCBA) é o processo de montar componentes eletrônicos em PCBs e torná-los conectados ao circuito por meio de soldagem e outros processos. Neste artigo, apresentaremos os conceitos relacionados ao PCBA e o fluxo de processamento do PCBA.

O que é montagem de PCB?

PCBA, ou montagem de placa de circuito impresso, é uma parte importante do projeto de circuitos eletrônicos.
Não é apenas uma simples placa de circuito impresso (PCB), mas componentes eletrônicos (como componentes SMD SMT e componentes plug-in DIP) são montados na placa PCB e formados em um sistema de circuito completo por meio de soldagem e outros processos.
PCBA é amplamente utilizado em todos os tipos de produtos eletrônicos, como TVs, computadores, telefones celulares, eletrônica automotiva e equipamentos médicos, etc.. É um componente central indispensável para conexão elétrica e transmissão de sinal nesses dispositivos.

Componentes básicos de conjuntos de placas de circuito impresso

1. Componentes da estrutura básica

Substrato: Feito de material isolante (E.G.. Resina epóxi FR-4) que fornece suporte mecânico e isolamento elétrico.
Camada de chumbo e folha de cobre: folha de cobre gravada para formar uma rede de condutores para a transmissão de corrente e sinais.
Almofadas de solda e vias: As almofadas de solda são usadas para soldar pinos e vias de componentes, conectando diferentes camadas do circuito.
Máscara de solda e serigrafia: A máscara de solda (revestimento verde) protege a camada externa do circuito, e a serigrafia rotula as localizações dos componentes e os identifica.
Orifícios de montagem e conectores: para consertar a placa ou conectar outros dispositivos.

2. Componentes ativos

Circuitos integrados (Ic): componentes principais, funções lógicas complexas integradas, como microprocessadores, memória.
Transistor (Tubo Triodo/Efeito de Campo): usado para amplificação de sinal, controle de comutação.
Diodo: condutividade unidirecional, usado para retificação, estabilização de tensão.
Sensores: detectar parâmetros ambientais (E.G.. temperatura, luz) e convertê-los em sinais elétricos.
Atuador (relé, motor): de acordo com o sinal de controle para executar a ação.

3. Componentes passivos

Resistor: limite de corrente, divisor de tensão e corrente.
Capacitor: armazenar energia elétrica, filtragem, acoplamento.
Indutor: armazenamento de energia magnética, filtragem, oscilação.
Transformador: conversão de tensão, correspondência de impedância.
Oscilador de cristal: fornecer sinais de relógio para garantir a operação estável do equipamento.

4. Componentes de conexão e proteção

Conector: conexão entre placas ou equipamentos (como fileiras de alfinetes, tomadas).
Fusíveis: proteção contra sobrecorrente.
Varistor / diodo de supressão transitória: tensão anti-surto.
Filtro: Suprime o ruído e melhora a qualidade do sinal.

O processo básico de montagem de PCB

Produção de PCBA, ou seja, Placa nua PCB através da colocação de componentes, plug-in, e complete o processo de soldagem. Este processo abrange uma série de procedimentos, incluindo processamento de posicionamento SMT, Processamento de inserção DIP, Teste PCBA, revestimento de três provas, e a inspeção visual final e envio da embalagem. Cada etapa é crítica e funciona em conjunto para garantir a qualidade e o desempenho do PCBA.

Processamento SMT SMD

1. Queda do tabuleiro
Este elo no início da linha de produção SMT desempenha um papel crucial, garante que as placas PCB possam ser transferidas para a linha de produção de maneira ordenada e eficiente, garantindo assim a continuidade e eficiência da produção.

2. Impressão de pasta de solda
A impressão em pasta de solda é uma parte fundamental do processamento de posicionamento SMT, que envolve a impressão precisa de pasta de solda na placa de circuito por meios manuais através do estêncil da máquina de impressão. Esta etapa não requer apenas uma máquina de impressão profissional (como mesa de impressão manual) e rodo, mas também requer um controle rigoroso da composição da pasta de solda, resolução de impressão, precisão, e espessura e uniformidade da pasta de solda.

3. Posicionamento na máquina
A colocação na máquina consiste nos componentes SMD de acordo com o diagrama do processo ou requisitos da BOM, através da programação da máquina SMD ou alinhamento manual, a montagem precisa na placa de circuito foi impressa com boa pasta de solda.

4.Soldagem por refluxo
Na impressão da pasta de solda e na máquina após o patch, a fim de garantir que os componentes possam ser firmemente soldados na placa PCB, soldagem por refluxo deve ser realizada. Este link através do aquecimento de alta temperatura para derreter a pasta de solda, de modo que os componentes e as placas de PCB estejam próximos uns dos outros, de modo a completar a soldagem.

5.Inspeção AOI
AOI pós-forno é um elo fundamental na linha de produção. É através do método de reconhecimento gráfico que a imagem digitalizada padrão do sistema AOI será armazenada e a detecção real da imagem para comparação, para obter os resultados do teste. Os pontos técnicos deste link incluem padrão de inspeção, força de detecção, taxa de detecção falsa, posição de amostragem, taxa de cobertura e ponto cego. Seus itens de inspeção cobrem uma ampla gama de possíveis problemas, como peças faltantes, reverter, vertical, solda quebrada, peças erradas, menos estanho, pernas deformadas, estanho contínuo e mais estanho.

Processamento de inserção DIP

Inserção DIP, também conhecida como embalagem DIP ou tecnologia de embalagem em linha de linha dupla, é um processo que empacota chips de circuito integrado na forma de inserção em linha de duas linhas.

1.Inserção manual
Neste link, o PCB é passado pela rotação da corrente, e os trabalhadores precisam inserir as peças e componentes moldados de forma precisa e correta na posição correspondente do PCB de acordo com as instruções de trabalho (aplicável a componentes de furo passante).

2. Solda de onda
A soldagem por onda é uma espécie de solda fundida com a ajuda da bomba, no tanque de solda para formar uma forma específica do processo de onda de solda. Durante o processo de soldagem, a PCB com componentes inseridos passa pela corrente transportadora e passa pela onda de solda em um ângulo e profundidade de imersão específicos, realizando assim uma conexão sólida das juntas de solda.

3. Corte manual dos pés
Depois que a soldagem por onda for concluída, a placa PCB precisa ser cortada manualmente. Esta etapa envolve componentes de plug-in manuais da placa PCB na superfície dos pinos expostos da almofada, de acordo com as disposições das instruções de operação para corte. O objetivo de cortar a operação do pé é garantir que a altura dos pinos componentes no lugar certo, evitando danos ao corpo do componente e sua almofada.

4. Soldagem manual
No processo de soldagem manual, a necessidade de anormalidades de soldagem da placa PCB, como solda falsa, vazamento de solda, menos estanho, estanho, etc., reparar em tempo hábil. Ao mesmo tempo, para os componentes da inserção de anormalidades, como distorcido, flutuando alto, menos peças, inserção errada, etc., também precisam ser tratados adequadamente para garantir a qualidade da soldagem.

Processamento de inserção DIP

Processamento de inserção DIP

Link de teste

1.Teste de TIC

O teste TIC é projetado para examinar as características básicas dos componentes para garantir um bom desempenho. Durante o processo de teste, de (não conforme) e tudo bem (qualificado) os produtos são colocados separadamente para facilitar o processamento posterior. Para obter os resultados do teste da placa de circuito OK, as etiquetas de teste de TIC correspondentes precisam ser afixadas, e separado da espuma, para facilitar o tubo subsequente.

2.Teste FCT

O teste FCT foi projetado para verificar de forma abrangente a integridade funcional da placa de circuito. No processo de teste, de (defeituoso) e tudo bem (qualificado) estritamente diferenciado, e estão devidamente colocados. Para placas de circuito com resultados de teste OK, eles precisam ser rotulados com os rótulos de teste FCT apropriados e isolados da espuma para facilitar o rastreamento e gerenciamento subsequentes. Ao mesmo tempo, se você precisar gerar um relatório de teste, você deve garantir que o número de série no relatório corresponda ao número de série na placa PCB. Para produtos GN, eles precisam ser enviados ao departamento de manutenção para reparo, e faça um bom trabalho registrando o relatório de manutenção do produto com defeito.

Revestimento de tinta de três provas

Tinta três provas, como uma espécie de revestimento com funções especiais, é amplamente utilizado na proteção PCBA. Sua função é fornecer proteção abrangente para componentes eletrônicos, resistir eficazmente à erosão da umidade, névoa salina e substâncias corrosivas. Pulverizando tinta de três provas, não apenas garante que os produtos funcionem de forma estável sob o ambiente hostil de alta umidade e alta névoa salina, mas também prolonga significativamente sua vida útil.

Inspeção visual para embalagem e envio

Antes de embalar e enviar, inspeção manual deve ser realizada para garantir a qualidade do produto, O padrão IPC610 é uma base importante para inspeção, focusing on checking whether the direction of the components on the PCBA is correct, such as IC, diodos, transistores, tantalum capacitors, aluminum capacitors and switches and so on. Ao mesmo tempo, it is also necessary to carefully check the defects after welding, such as short circuit, open circuit, fake parts, false welding, etc., to ensure that the products can work stably and meet customer requirements.

Looking for pcb assembly service provider?

LST is a factory with more than 20 years experience in pcb assembly, we provide customers with stable and convenient electronic manufacturing services, one-stop turnkey manufacturing. If you have a manufacturing project, please contact customer service, we will reply you at the first time.

What are the advantages of using flexible PCB?

In the realm of printed circuit boards (PCBs), flexible PCBs stand out as a unique category, complementing their traditional rigid counterparts. In a wide range of applications, flexible PCBs demonstrate capabilities that rival — and sometimes surpass — those of rigid PCBs. To explore the charm and versatility of flexible PCBs, this article offers an in-depth analysis of their various types and real-world applications.

What Is a Flexible Circuit Board?

An FPC (Flexible Printed Circuit), often referred to as a “placa macia,” is a member of the PCB family. Made with flexible substrates such as polyimide or polyester films, FPCs boast high wiring density, lightweight construction, thin profiles, and exceptional bendability and flexibility. These boards can endure millions of dynamic flexing cycles without damaging the circuitry, making them ideal for complex spatial layouts and three-dimensional assembly. By integrating component mounting and wiring into a single structure, FPCs achieve a level of performance that rigid PCBs often cannot match.

Basic Structure of an FPC

Copper Film (Copper Foil Substrate)

  • Copper Foil: A crucial material in FPCs, copper foil is available in two types — electrolytic copper and rolled annealed (RA) copper — with common thicknesses of 1oz, 1/2Oz, and 1/3oz.

  • Substrate Film: Supports the copper foil and typically comes in thicknesses of 1 mil or 1/2 mil.

  • Adhesive: Used during manufacturing to bond layers, its thickness varies depending on customer requirements.

Capa (Protective Cover Film)

  • Cover Film: Primarily used for surface insulation, usually with thicknesses of 1 mil or 1/2 mil, applied together with adhesive layers.

  • Release Paper: Employed during manufacturing to prevent foreign matter from adhering to the adhesive before lamination, simplifying the production process.

Reforçador (PI Stiffener Film)

  • Reforçador: Enhances the mechanical strength of the FPC, facilitating surface-mount assembly. Tipicamente, stiffeners range from 3 mil to 9 mil in thickness and are bonded with adhesives.

  • EMI Shielding Film: Protects the internal circuits from external electromagnetic interference, ensuring the stability and reliability of electronic devices.

Types of Flexible PCBs

Types of Flexible PCBs

Types of Flexible PCBs

As a major innovation within the PCB industry, flexible PCBs not only offer exceptional performance but also come in a wide variety of types. Their versatility greatly enriches the design possibilities for electronic products and meets the demands of increasingly complex applications. Below is an overview of the most common types of flexible PCBs and their typical uses:

  1. Unilateral PCB flexível
    Featuring a simple structure with a single conductive layer, these PCBs are cost-effective and ideal for basic applications.

  2. Double-Sided Flexible PCB
    With copper layers on both sides connected through metallized vias, double-sided flexible PCBs offer greater functionality for more complex scenarios.

  3. PCB flexível multicamadas
    Built with multiple layers of copper and dielectric material stacked alternately, these PCBs achieve high elasticity while delivering superior performance.

  4. PCB rígido-flex
    Combining both rigid and flexible circuits into a single board, rigid-flex PCBs support high-density wiring and sophisticated layout designs.

  5. HDI Flexible PCB
    Featuring high-density interconnect (HDI) projetos, these boards are lightweight, compactar, altamente integrado, and offer excellent electrical performance.

  6. Sculptured Flexible Circuit
    Designed with variable trace thicknesses to meet specific localized requirements, these circuits are ideal for intricate electronic applications.

  7. Polymer Thick Film Flexible PCB
    Manufactured using screen-printing techniques, these low-cost flexible circuits are best suited for low-voltage applications.

  8. Dual Access/Backside Flexible PCB
    A single-sided design that allows circuit access from both sides, simplifying the layout of complex circuitry.

  9. Single-Layer Flexible FPCB
    Comprising a base layer, adhesive, and a copper layer, this straightforward structure emphasizes protection of the conductive areas.

  10. Dual Access/Backside FPCB
    Similar in structure to a single-layer FPCB but with laser-drilled openings to access the copper layer, significantly enhancing design flexibility.

Features of Flexible PCBs

  1. Flexibilidade:
    Flexible PCBs can bend and fold without compromising circuit functionality, allowing for freedom of movement in three-dimensional spaces.

  2. Lightweight and Thin:
    Comparado com PCBs rígidos, flexible PCBs are significantly thinner and lighter.

  3. Miniaturized Design:
    Thanks to their ability to bend in 3D space, flexible PCBs enable the creation of more compact electronic products.

  4. Alta confiabilidade:
    Flexible PCBs offer greater resistance to vibration and shock compared to rigid boards, enhancing overall reliability.

  5. High-Temperature Resistance:
    These PCBs can operate reliably in high-temperature environments, demonstrating outstanding thermal stability.

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

In-Depth Analysis of Core Advantages of Flexible PCBs

PCBs flexíveis (CPFs) have become increasingly indispensable in modern electronics due to their unique physical properties and design advantages. Below is a detailed exploration of their core strengths:

1. Exceptional Flexibility and Spatial Adaptability

  • Bendable and Foldable Design:
    Utilizing flexible substrates such as polyimide (Pi) ou poliéster (BICHO DE ESTIMAÇÃO), FPCs can bend, fold, or even roll within three-dimensional space, breaking the two-dimensional limitations of traditional rigid PCBs. Por exemplo, in foldable smartphones, FPCs are used in hinge areas, enduring hundreds of thousands of folds without failure.

  • Space Optimization:
    With thicknesses as low as 0.1 mm and weighing only 50%-70% of a rigid PCB, FPCs significantly enhance space utilization inside devices. In smartphones, FPCs seamlessly connect the mainboard to the display and camera modules, habilitando “zero-gap” projetos.

2. Lightweight Design and High Reliability

  • Weight Reduction and Cost Savings:
    The lightweight nature of FPCs makes them ideal for aerospace and wearable devices. Por exemplo, satellite electronics systems utilizing FPCs see weight reductions of over 30%, while also minimizing the need for bulky connectors and reducing overall assembly costs.

  • Environmental Resistance:
    PI substrates withstand temperatures up to 250°C and exhibit excellent chemical and vibration resistance, making them suitable for harsh environments such as automotive engine compartments and industrial control systems.

3. Design Freedom and Integration Capabilities

  • 3D Routing:
    FPCs can route along curved surfaces, supporting innovative structural designs. In smartwatches, FPCs are integrated into the straps to flexibly connect sensors to the mainboard.

  • Integração de alta densidade:
    With technologies like laser drilling and fine-line patterning, FPCs can achieve line widths and spacings as small as 20μm/20μm, meeting the miniaturization demands of devices such as implantable medical equipment (Por exemplo, neural stimulators) for multi-channel signal transmission.

4. Dynamic Adaptability and Durability

  • Extended Flexing Lifespan:
    Designs using serpentine routing patterns and rolled annealed (RA) copper allow FPCs to endure over 100,000 bending cycles, ideal for dynamic applications like flip phones.

  • Shock Absorption:
    Flexible substrates absorb mechanical stresses, reducing the risk of solder joint failures caused by vibrations. In automotive electronics, FPCs are used in airbag control modules to ensure signal stability even under extreme collision conditions.

5. Cost Efficiency and Manufacturing Productivity

  • Long-Term Cost Benefits:
    Although the unit cost of FPCs may be higher, their ability to reduce the need for connectors and simplify assembly processes lowers overall system costs in mass production. Por exemplo, integrated FPC modules in smartphones are 15%-20% more cost-effective than traditional cable harness solutions.

  • Rapid Production Support:
    FPCs can be produced with robotic automation, supporting small-batch, multi-variety manufacturing, ideal for the fast-paced iteration cycles of consumer electronics.

Typical Application Scenarios

  • Eletrônica de consumo:
    Display connections and camera modules in smartphones and tablets.

  • Dispositivos médicos:
    Implantable pacemakers and miniature diagnostic device sensor circuits.

  • Eletrônica Automotiva:
    Lightweight wiring for engine management systems and advanced driver-assistance systems (ADAS).

  • Aeroespacial:
    Radiation-resistant flexible circuits for satellite antennas and UAV control systems.

Conclusão

With the rapid rise of wearable devices, monitores flexíveis, and smart technologies, the demand for flexible PCBs is experiencing explosive growth. In an era where electronic products increasingly prioritize lightweight, afinar, compactar, and highly efficient designs, ultra-thin and stretchable flexible circuits are poised to unlock immense market potential and drive the next wave of advancements in electronic devices and related technologies.

Como remover revestimentos de proteção de PCBs

Before production and processing, a protective revestimento isolante is typically applied to the surface of a PCB to safeguard it from environmental damage. This coating helps prevent water, pó, salt, and dirt from coming into contact with sensitive components, thus preserving the performance of the mainboard.

Removing conformal coatings can be challenging due to their durability and resistance to wear. If rework is needed, alcohol is not the ideal choice for removing these coatings. While alcohol is inexpensive and readily available, it lacks the solvent strength to effectively dissolve the coating and often requires extended soaking to have any effect. Neste artigo, we will explore effective methods for removing protective coatings from PCBs.

Types of Conformal Coatings

There are five common types of conformal coatings available on the market:

  1. Acrylic Resin
    Acrylic resins dissolve easily in many organic solvents, making them convenient for board rework. They offer selective chemical resistance, dry quickly, resist mold, do not shrink during curing, and provide good moisture resistance. No entanto, they have low abrasion resistance and are prone to scratching, cracking, and peeling.

  2. Epoxy Resin
    Typically composed of two parts that begin to cure upon mixing, epoxy resins offer excellent abrasion resistance, chemical resistance, and decent moisture protection. No entanto, they are difficult to remove and rework. Because film shrinkage occurs during polymerization, a buffer solution is recommended around precision components. Curing at lower temperatures can help minimize shrinkage.

  3. Poliuretano
    Polyurethane coatings provide strong moisture and chemical resistance. Due to their robust chemical properties, removing them usually requires strippers, which may leave ionic residues behind. These residues must be thoroughly cleaned to avoid baseboard corrosion. Although rework through soldering is possible, it often results in brown discoloration that can affect the product’s appearance.

  4. Silicone
    Silicone is typically a single-component compound that begins to cure when exposed to moisture in the air and a certain temperature. Once cured, it forms a uniform, well-adhering layer across all surfaces of electronic components or modules. It is suitable for high-temperature environments (>120° c), as well as settings that require moisture sensitivity, chemical resistance, corrosion protection, and antifungal properties.

  5. Uretano (Polyurethane Carbamate)
    Urethane offers strong protection, hardness, and high solvent resistance. It provides excellent abrasion resistance and low moisture permeability. While it performs well in cold environments, it is not suitable for high-temperature applications. Most urethane coatings are difficult or impossible to rework or repair.

PCB

Common Types of Protective Coatings and Removal Methods

  1. Chemical Solvent Method

Applicable Types:

  • Poliuretano: Methanol/ethylene glycol ether with an alkaline activator, or toluene/xylene.

  • Acrílico: Methylene chloride, chloroform, ketones (Por exemplo, acetona), γ-butyrolactone, or butyl acetate.

  • Silicone: Methylene chloride or specific hydrocarbon solvents.

  • Epóxi: Difficult to remove once cured; for small areas, methylene chloride with an acidic activator and a cotton swab may be used.

Procedure:
Apply the solvent to the coating surface. Once the coating swells, gently wipe with a cotton swab or soft cloth. Avoid letting the solvent spread to unintended areas.


  1. Physical Removal Methods

Heat Method:

  • Ferramentas: Soldering iron or hot air gun.

  • Observação: Carefully control the temperature (do not exceed component tolerance). Suitable for high-temperature resistant components. Work quickly to avoid damaging the laminate.

Micro-abrasion Method:

  • Ferramentas: Specialized abrasive equipment (Por exemplo, walnut shell or glass bead media).

  • Observação: Mask surrounding areas to prevent electrostatic buildup. Should be performed by trained personnel.

Mechanical Scraping:

  • Ferramentas: Razor blade or small knife.

  • Passos: Cut a V-groove at the solder point, apply solvent, then lift the coating. Best for localized rework.


  1. Specialized Cleaning Agents

Recommendation: Use eco-friendly cleaning agents (Por exemplo, Kyzen ES125A).
Método: Ultrasonic cleaning or soaking. Suitable for large areas or complex PCBs.


  1. Localized Replacement Method

Use Case: When only specific components need replacement.
Passos: Use a soldering iron to heat and remove the coating on the component, replace the part, clean the area, and reapply conformal coating.


Resumo

PCB protective coatings are surface-applied materials designed to protect circuit boards from moisture, pó, chemicals, and high temperatures, thus improving product reliability. Os tipos comuns incluem:

  • Acrílico (easy to apply, requires specific solvents for removal),

  • Poliuretano (strong protection, difficult to remove, may emit toxic fumes when heated),

  • Silicone (heat-resistant and reworkable), e

  • Epóxi (very tough once cured, hard to remove).

Removal methods should be selected based on coating type and may include chemical solvents (Por exemplo, methylene chloride, methanol), physical methods (aquecer, abrasion), special cleaning agents, ou localized replacement. Always prioritize safety and environmental responsibility, and take care to avoid damaging the PCB or its components.

Guia abrangente de design de PCB e prototipagem de 8 camadas

No campo da fabricação de eletrônicos, Placas de circuito impresso (PCBs) desempenhar um papel crítico. Com avanços rápidos na tecnologia, PCBs multicamadas tornaram -se amplamente utilizadas em vários dispositivos eletrônicos devido ao seu desempenho elétrico superior e utilização de espaço otimizada. Este artigo fornece uma breve visão geral e explicação centralizadas na prototipagem de PCBs de 8 camadas.


Estrutura básica de um PCB de 8 camadas

8-Camada pcbs

Uma PCB de 8 camadas consiste em oito camadas condutivas (normalmente cobre) intercalado com sete camadas isolantes (Geralmente materiais dielétricos). Esta estrutura permite roteamento de circuito mais complexo, Aumenta a integração do circuito, e melhora o desempenho geral. Cada camada condutora pode ser roteada conforme necessário de acordo com o design, Enquanto as camadas isolantes garantem o isolamento elétrico entre as camadas.


8-Camada PCB Stack-Up

1. Camada de sinal (PRINCIPAL)

Camada de sinal

Camada de sinal

A primeira camada de sinal, também conhecido como a camada superior, é a superfície visível da PCB física e é usada para montar componentes eletrônicos. Como mostrado no diagrama, Esta camada tem uma alta densidade de traços. Uma razão é que os componentes são colocados nessa mesma camada, permitindo o roteamento direto sem a necessidade de Vias alternar as camadas. Isso evita vias que interferem no roteamento em outras camadas. No design da placa multicamada, via colocação requer consideração cuidadosa.

2. Plano de potência (VCC)

Plano de potência
Esta camada não mostra roteamento porque é dedicada à rede de energia. Durante o design, Rastreios específicos são usados ​​para dividir diferentes domínios de potência. É essencial colocar componentes com o mesmo requisito de tensão na mesma região para que eles possam ser conectados à zona de potência correspondente através de vias - eliminando a necessidade de roteamento adicional.

3. Camada de sinal (Camada interna 3)

Camada interna 3

Camada interna 3


Esta camada é usada principalmente para roteamento de sinal, Embora algumas linhas de energia também estejam presentes. No diagrama, Os traços mais espessos representam linhas de energia, Enquanto os mais finos são traços de sinal.

4. Camada de sinal (Camada interna 4)

Camada interna 4
Esta camada é semelhante em função à anterior, usado para roteamento de sinal e energia.

5. Plano de aterramento (Gnd)

Plano de aterramento
Esta camada serve como rede de terra, interconectado através de vias.

6. Camada de sinal (Camada interna 5)

Camada interna 5
Usado para roteamento de sinal.

7. Plano de aterramento (Gnd)
Esta camada reflete a camada 5 e também funciona como parte da rede terrestre.

8. Camada inferior

Camada inferior
A camada inferior, Como a camada superior, é comumente usado para rotear pequenos componentes. Rastreios para muitos dos chips menores são normalmente encontrados na camada superior ou inferior.

Espessura padrão de PCBs de 8 camadas

A espessura padrão para PCBs de 8 camadas normalmente varia de 1.6 mm (63 Mils) para 2.4 mm (94 Mils), Dependendo da espessura da folha de cobre e da escolha de materiais pré -gravados/núcleos. No entanto, A espessura final também pode ser influenciada por vários fatores -chave:

  • Espessura de cobre (Por exemplo, 1 Oz, 2 Oz)

  • Espaçamento dielétrico entre camadas

  • Tipo de materiais usado na pilha de PCB

Espessura padrão de PCBs de 8 camadas

Espessura padrão de PCBs de 8 camadas

PCBs mais espessos oferecem maior resistência mecânica e são menos propensos a deformação, tornando -os ideais para aplicações industriais. PCBs mais finos, por outro lado, são mais adequados para dispositivos compactos, como smartphones e eletrônicos portáteis.

Em design prático, o padrão Espessura da PCB deve ser determinado com base nas características do circuito - como o controle de impedância é necessário, Se houver requisitos de gerenciamento térmico, e as capacidades de fabricação do fabricante de PCB. Uma espessura apropriada garante que o PCB possa ser montado corretamente dentro do gabinete, alinhado com conectores, e integrado suavemente no conjunto do produto final.


Considerações de design-chave para PCBs de 8 camadas

1. Controle de impedância
Traços de sinal de alta velocidade (Por exemplo, Ddr4, HDMI) requer correspondência de impedância diferencial (normalmente 100Ω). Isso é conseguido pela largura de traço de ajuste fina, espaçamento, e a distância para referir aviões.
Usar Ferramentas de simulação SI/PI (Integridade do sinal/potência) Para otimizar o layout de rastreamento.

2. Rede de distribuição de energia (Pdn)
Os aviões de energia e terra dedicados reduzem o ruído e garantem a integridade da energia.
Capacitores de desacoplamento (Por exemplo, 0.1μF) são colocados perto dos pinos de energia para suprimir a interferência de alta frequência.

3. Roteamento de pares diferenciais
Linhas de sinal diferenciais (Por exemplo, USB 3.0) deve ser roteado com o mesmo comprimento e espaçado em paralelo.
Evite ângulos de 90 ° - use 45° dobras Para reduzir a reflexão do sinal e manter a integridade.

4. Design de interface

  • Ethernet: Transformadores magnéticos devem ser colocados perto do chip phy; Pares diferenciais devem ter despejada de cobre para baixo para minimizar a diafonia.

  • HDMI: As bobinas de modo comum e os componentes de proteção ESD devem ser colocados perto do conector; manter Skew intra-par ≤ 5 Mils.

5. Gerenciamento térmico
Para componentes de alta potência (Por exemplo, CPUs), adicionar Vias térmicas ou materiais condutores abaixo do componente para dissipar o calor e prevenir a instabilidade do sinal induzido térmico.

8-Processo de prototipagem de PCB de camada

O processo de prototipagem para um PCB de 8 camadas normalmente envolve as seguintes etapas importantes:

  1. Projeto
    Use o software profissional de design eletrônico para criar o diagrama esquemático, e convertê -lo em um arquivo de layout da PCB.

  2. Análise
    Realize uma revisão completa dos arquivos de design para garantir que o layout do circuito seja preciso e atenda aos requisitos de fabricação.

  3. Fotoplotação
    Converta os arquivos de layout da PCB verificados em arquivos de fotoplotes, que são usados ​​no processo de exposição.

  4. Fabricação de circuito da camada interna
    Importar os arquivos de fotoplotes para uma máquina de exposição. Usando processos de exposição e desenvolvimento, Crie o circuito da camada interna.

  5. Laminação
    Alterne as camadas internas com camadas isolantes, e unir -os sob alta temperatura e pressão para formar uma estrutura multicamada.

  6. Perfuração
    Buracos de perfuração na pilha laminada com base nas especificações do projeto para permitir a montagem de componentes e conexões entre camadas.

  7. Fabricação de circuito da camada externa
    Crie padrões de circuito nas camadas externas de cobre e execute o acabamento superficial necessário (Por exemplo, arremesso de ouro, Sangrar).

  8. Inspeção
    Realize verificações rigorosas de qualidade no PCB de 8 camadas acabado, incluindo inspeção visual e teste elétrico, Para garantir o desempenho e a confiabilidade.

  9. Envio
    Uma vez que os PCBs passam inspeção, Eles são embalados e enviados para o cliente.

8-Processo de prototipagem de PCB de camada

8-Camada Prototipagem de PCB Processo


Aplicações de PCBs de 8 camadas

8-Os PCBs de camada são amplamente adotados em vários setores devido ao seu excelente desempenho elétrico e integridade superior de sinal. As áreas de aplicação comuns incluem:

  1. Equipamento de telecomunicações
    No setor de comunicações-principalmente em alta frequência, sistemas de alta velocidade, como estações base 5G e dispositivos de comunicação óptica-PCBs de 8 camadas reduzem efetivamente a diafonia de sinal e melhoram a qualidade da transmissão e a estabilidade.

  2. Computadores e servidores
    Ambientes de computação modernos, especialmente servidores e data centers de alto desempenho, requer design intrincado de circuito e gerenciamento preciso de energia. A arquitetura multicamada de PCBs de 8 camadas atende às diversas demandas de circuitos e aprimora a eficiência do processamento de dados.

  3. Eletrônica de consumo
    Dispositivos como smartphones, comprimidos, e os sistemas de áudio doméstico de ponta de última geração dependem cada vez mais de PCBs de 8 camadas. À medida que a funcionalidade do dispositivo se expande, O mesmo acontece com a densidade do componente. Essas placas permitem maior integração e estabilidade dentro de fatores de forma compactos.

  4. Dispositivos médicos
    Equipamentos complexos, como máquinas de ultrassom e scanners de TC, se beneficiam do layout otimizado e da precisão do sinal fornecida por PCBs de 8 camadas. Isso garante processamento preciso de sinal, o que é crítico para a confiabilidade diagnóstica.

  5. Sistemas de controle industrial
    Sistemas de automação e robôs industriais exigem alta confiabilidade e complexidade funcional. A robusta distribuição de energia e imunidade de ruído de PCBs de 8 camadas os tornam adequados para ambientes industriais severos e exigentes.


8-camada pcbs, com seu design colaborativo multicamada, abordar os principais desafios, como integridade de sinal de alta velocidade, Supressão de ruído de potência, e gerenciamento térmico. Eles estão se tornando componentes essenciais em campos emergentes como 5G Comunicação e Você tem hardware. À medida que as tecnologias de materiais evoluem-como dielétrico ultrafino e perfuração a laser-os limites de desempenho dos PCBs de 8 camadas continuarão a expandir.