Подробное объяснение процесса проектирования печатной платы HDI
/в Технические знания на печатной плате/от администраторHDI печатная плата (High Density Interconnect printed circuit board) is a key enabling technology for achieving miniaturization, высокая производительность, and high reliability in modern high-end electronic products. As chip I/O counts continue to increase and signal speeds keep rising, traditional PCBs are gradually becoming insufficient in terms of routing density, signal integrity, and package compatibility. HDI-платы, through the use of microvias, слепые переходы, скрытые переходные отверстия, and multi-step lamination structures, provide a more optimized solution for complex circuit designs.
The design of HDI PCBs is not simply a matter of “reducing trace width and increasing layer count,” but rather a systematic engineering process that spans system architecture, электрические характеристики, производственные процессы, и контроль затрат. This article provides a step-by-step, detailed, and engineering-oriented explanation of the HDI PCB design process, making it suitable for use as a technical blog, corporate website technical documentation, or in-depth SEO content.
HDI PCB Overview and Technical Background
1. Definition of HDI PCB
HDI PCB refers to a multilayer printed circuit board that achieves high-density interconnection by using laser-drilled microvias and employing blind vias, скрытые переходные отверстия, and multiple lamination processes. Its fundamental objective is to:
achieve more component interconnections, shorter signal paths, and more stable electrical performance within a limited PCB area.
2. Typical Application Scenarios of HDI PCB
Smartphones and tablet computers
Wearable devices
Автомобильная электроника (АДАС, БМС, intelligent cockpit systems)
Medical electronics and high-reliability equipment
Communication and high-speed computing equipment
3. Fundamental Differences Between HDI PCB and Traditional PCB
| Элемент | Traditional PCB | HDI печатная плата |
|---|---|---|
| Interconnection method | Mainly through-holes | Микроотверстия, слепые переходы, скрытые переходные отверстия |
| Routing density | Medium to low | Extremely high |
| Signal path length | Longer | Shorter |
| Supported packages | Млн, low I/O BGA | High I/O BGA, CSP, Flip-Chip |
Detailed Breakdown of the Complete HDI PCB Design Process
1. Requirement Analysis and Pre-Design Preparation
Core Objective
Convert abstract requirements into actionable design specifications and confirm manufacturing feasibility.
Detailed Execution Process
Requirement Investigation (Sub-Steps)
Confirmation with Product Team:
Сценарии применения (потребительская электроника / медицинский / промышленный), операционная среда (температура / влажность / вибрация), product lifecycle (≥5 years requires enhanced reliability)Confirmation with Hardware Engineers:
Core IC models (НАПРИМЕР., BGA package parameters), power architecture (уровни напряжения / current requirements), signal types (высокоскоростной / analog / цифровой)Preliminary Communication with PCB Manufacturer:
Confirm manufacturing limits (minimum laser via diameter / maximum layer count / impedance control capability)
Requirement Document (SOR) Подготовка (Deliverable)
| Core Document Module | Mandatory Content | Example Specification |
|---|---|---|
| Electrical Parameters | Signal frequency, требования к импедансу, current thresholds | High-speed signal: PCIE 4.0 (16 Gbps), single-ended 50 Ω ±3% |
| Physical Parameters | Board size, толщина, weight limits | Board size: 120 × 80 мм, толщина: 1.6 мм (±0.1 mm) |
| Reliability Requirements | Temperature/humidity range, vibration rating | Рабочая температура: –40 °C to 85 ° C., вибрация: 10–2000 Hz / 10 глин |
| Manufacturing Constraints | Manufacturer process limits, cost budget | Cost limit: 150 RMB / board, laser via ≥0.1 mm supported |
Tools and Resource Preparation (Sub-Steps)
Design Software Setup:
Install corresponding plugins (Altium → HDI Toolkit; Cadence → Microvia Optimizer), import manufacturer process libraries (IPC-2226A standard templates)Reference Material Collection:
Core IC datasheets (focus on package pinout and power requirements), manufacturer process specifications (laser drilling parameters / lamination process), отраслевые стандарты (IPC-6012E)Process Gate Decision:
Proceed to the next step only after SOR document approval and manufacturer process feasibility confirmation (manufacturer must issue a Process Compatibility Confirmation Letter).
2. Stack-Up Design

Stack-Up Design
Core Objective
Define layer structure, blind/buried via distribution, and impedance control strategy to enable subsequent routing.
Detailed Execution Process
Stack-Up Layer Count Determination (Sub-Steps)
Signal Layer Estimation:
Calculate required signal layers based on critical signals (высокоскоростной / differential).
Follow the principle: one signal layer corresponds to one reference layer.
Пример: 8 PCIE 4.0 differential pairs → 4 signal layers + 4 reference layers = 8 слоиPower/Ground Layer Allocation:
Divide by voltage domains (НАПРИМЕР., 3.3 V. / 1.8 V. / core voltage).
Each major voltage domain requires at least one power layer and one adjacent ground layer.Blind/Buried Via Layer Matching:
If blind vias are required for “Top → L2” and “L7 → Bottom”, and buried vias for “L3 → L6”, the stack-up must be:
Вершина (S1) – L2 (S2) – L3 (P1) – L4 (G1) – L5 (G2) – L6 (P2) – L7 (S3) – Bottom (S4)
Stack-Up Parameter Design (Sub-Steps)
Layer Thickness Allocation:
Standard combination: signal layer 0.07 мм + dielectric 0.1 мм + power layer 0.1 мм
Example total thickness 1.6 мм:
0.07 × 4 + 0.1 × 3 + 0.1 × 1 = 1.6 ммImpedance Simulation and Validation:
Use Ansys SIwave, input layer thickness and Dk values, simulate single-ended and differential impedance.
Adjust dielectric thickness if impedance deviates (НАПРИМЕР., increase dielectric thickness if impedance is too low).Blind/Buried Via Path Planning:
Draw via connection diagrams (НАПРИМЕР., S1→S2 blind via, S3→S4 blind via, L3→L6 buried via) to avoid via overlap.
Stack-Up Design Deliverables
Stack-up structure drawing (layer thickness / материалы / via types)
Impedance simulation report
Blind/buried via distribution table
Process Gate Criteria:
Impedance error ≤ ±3%, blind/buried via aspect ratio ≤ 0.75:1, layer-to-layer alignment meets manufacturer requirements (within ±25 μm).
3. Component Selection and Placement Design

Component Selection and Placement Design
ution Process (Placement Order)
Component Selection Confirmation (Pre-Step)
Package Priority:
Prefer 0201 / 01005 пакеты (confirm SMT capability); core ICs prioritize BGA/CSP packages to reduce footprint.Material Compatibility Check:
Confirm pin pitch (≥0.4 mm for routing feasibility), power dissipation (≤2 W per component; higher requires thermal design).
Placement Execution Steps
Fix Core Components:
Place CPU/GPU/FPGA at board center. Reserve thermal space per datasheet (≥4 thermal vias under BGA).Place Power Components:
Input filter capacitors (10 µF + 0.1 µF) within ≤3 mm of IC power pins.
PMIC placed close to core IC to minimize power path length.Signal Zoning:
High-frequency area (≥5 GHz): near board edge, isolated from power area, enclosed by metal shielding (ground pin spacing ≤5 mm)
Analog area (ADC/DAC): isolated zone, ≥3 mm from digital area
Interface area (USB/HDMI): close to board edge, connector edge ≥5 mm from board edge
Peripheral Component Adjustment:
Passive components placed close to corresponding IC pins (signal path ≤5 mm), avoid cross-zone placement.
Placement Optimization and Verification
Thermal Simulation:
Use Flotherm; hotspot temperature ≤85 °C (otherwise add thermal vias or adjust spacing).Placement DRC Checks:
Component spacing ≥0.3 mm (power components ≥1 mm)
Clear polarity markings
BGA clearance ≥1 mm for rework
Placement Deliverables
Component placement drawing
Thermal simulation report
Placement DRC report
Process Gate Criteria:
No thermal violations, zero critical DRC errors, manufacturer pre-review approval.
4. Laser Drilling and Via Metallization Design

Laser Drilling and Via Metallization Design
Detailed Execution Process
Drilling Scheme Design
Define via types (blind / buried / через), generate via distribution map (diameter / depth / connected layers).
Match laser parameters based on base material and confirm manufacturer capability.
| Via Type | Diameter (мкм) | Layer Connection | Laser Parameters (FR-4) | Drilling Sequence |
|---|---|---|---|---|
| Top blind via | 80–100 | S1 → L2 | 35 W., 70 кГц | Blind → buried → through |
| Bottom blind via | 80–100 | L7 → S4 | 35 W., 70 кГц | |
| Buried via | 150–200 | L3 → L6 | 40 W., 80 кГц | |
| Thermal through via | 300–500 | S1 → S4 | 50 W., 60 кГц |
Via Clearance Rules:
Via center ≥0.3 mm from pad edge, ≥0.2 mm from solder mask opening, no via overlap.
Via Metallization Process
Plasma desmear (1000 W., 60 с) → chemical micro-etch
Electroless copper: 28 ° C., 18 мин, thickness ≥0.5 µm
Гальваника: 2.5 A/dm², 75 мин, final copper thickness ≥20 µm
Качественная проверка: Рентген (no voids/cracks), micro-section copper coverage ≥95%
Process Gate Criteria:
No via conflicts, metallization parameters compliant, inspection passed.
5. Проектирование маршрутизации

Проектирование маршрутизации
Detailed Execution Flow (by Routing Priority)
Pre-Routing Preparation (Sub-Steps)
Set Routing Rules:
Trace width / интервал (minimum 2 мил / 2 мил), impedance values (single-ended 50 Ой / differential 100 Ой), differential pair length mismatch ≤ 3 мм.Assign Routing Layers:
High-speed signals → outer/inner layers adjacent to reference planes;
Power routing → power layers;
Low-speed signals → remaining layers.
Routing Execution (Sub-Steps)
Power Routing:
Calculate trace width based on current (I = 0.01 × A).
Пример: 3 A current → 1.5 mm trace width (35 μm copper).
Power layers split to isolate different voltage domains (isolation gap ≥ 2 мм).High-Speed Signal Routing (Highest Priority):
Дифференциальные пары: trace width = spacing (0.2 мм / 0.2 мм), parallel routing → use serpentine compensation for length mismatch (bend radius ≥ 5 × trace width).
Via handling: back-drill high-speed signal vias to remove stubs ≥ 1 мм, avoiding multi-layer via traversal.
Topology: PCIE / USB high-speed signals use Fly-by topology; branch length ≤ 30 мм.
Analog Signal Routing:
Routed separately, ≥3 mm from digital signals; use shielding traces (ground surrounding).Low-Speed Signal Routing:
Fill remaining space, avoid parallel runs with high-speed signals (spacing ≥ 2 мм).
Ground System Design (Executed in Parallel)
Digital Ground: continuous ground plane covering digital region.
Analog Ground: separate plane, single-point connection to digital ground at power entry.
High-Frequency Ground: mesh ground, grid spacing ≤ λ/20, where λ = speed of light / signal frequency.
Routing Optimization and Verification (Sub-Steps)
Signal Integrity Simulation:
Use Cadence Sigrity to simulate eye diagrams (eye height ≥ 0.5 V., eye width ≥ 0.5 UI).Routing DRC Check:
Ensure no trace width/spacing violations, no impedance discontinuities, no ground loops.
Routing Deliverables
Routing Layout (Гербер / CAD)
Signal Integrity Simulation Report
Routing DRC Report
Process Gate Criteria:
Simulation results meet specifications, zero critical DRC errors, and no impedance discontinuities in high-speed signals → proceed to DFM verification.
6. DFM (Дизайн для технологичности) Verification
(Process Safeguard: Preventing Design Rework)
Detailed Execution Flow (in Inspection Sequence)
Design Self-Check (Sub-steps)
Open the DFM tools in the PCB design software (Altium DFM / Cadence DFM Check) → select inspection items (as shown in the table below) → generate a self-check report.
| Inspection Category | Specific Check Items | Критерии приемки | Corrective Actions |
|---|---|---|---|
| Дизайн колодки | Pad size, интервал, solder mask opening | Pad ≥ 0.25 мм; solder mask opening = pad + 0.2 мм | Adjust pad size / solder mask opening |
| Через дизайн | Via spacing, размер отверстия, solder mask coverage | Via spacing ≥ 0.3 мм; solder mask coverage on via edge ≥ 0.1 мм | Adjust via location / размер отверстия |
| Silkscreen Design | Ширина линии, distance to pads | Line width ≥ 0.15 мм; distance to pad ≥ 0.2 мм | Move silkscreen / increase line width |
| Board Edge Design | Copper keep-out, tooling hole position | Copper keep-out ≥ 0.5 мм; tooling hole ≥ 5 mm from board edge | Increase keep-out area / adjust tooling holes |
Manufacturer Pre-Review (Sub-steps)
File submission:
Gerber X2 + IPC-2581 + drill table + BOM → manufacturer issues a DFM Review Report.Issue correction:
Modify the design according to manufacturer feedback
(НАПРИМЕР., laser vias smaller than capability → adjust to manufacturer-supported minimum diameter).
Final Verification (Sub-steps)
Secondary self-check:
Re-run DFM tools after revisions → zero violations.Prototype build validation:
Small-batch prototyping (recommended 5–10 boards) → verify solderability and signal performance.
DFM Deliverables
DFM Self-Check Report
Manufacturer DFM Review Report
Revised Design Files
Process Gate Criterion:
Manufacturer approval obtained, no manufacturability-blocking issues, prototype yield ≥ 90% → proceed to surface finish selection.
7. Surface Finish Selection and Design
(Final Process Stage: Impacts Soldering Reliability & Service Life)
Detailed Execution Flow
Surface Finish Process Selection (Sub-steps)
Select based on application requirements (reference decision logic):
Cost-sensitive: Оп (потребительская электроника)
High-frequency applications: Погружение серебро / Enepic (базовые станции, маршрутизаторы)
Multiple reflow cycles: Соглашаться / Enepic (медицинский, промышленный)
Harsh environments: Enepic (военный, аэрокосмическая)
Confirm manufacturer capability, например:
ENIG gold thickness: 0.05–0.1 μm
OSP thickness: 0.2–0.5 μm
Surface Finish Design Requirements (Sub-steps)
Pad coverage:
All soldering pads must be fully covered by surface finish; test points are recommended to be finished for probing reliability.Board edge handling:
Copper-free areas along the board edge should not receive surface finish to prevent edge lifting.
Process Gate Criterion:
Surface finish matches application requirements and is manufacturable → proceed to testing and validation.
8. Testing and Validation Process

Testing and Validation Process
Detailed Execution Flow (in Test Sequence)
Электрические испытания (Sub-steps)
Open/short testing:
Flying probe tester (accuracy ±0.01 mm) → 100% покрытие (IPC-9262) → no opens or shorts.Impedance testing:
Тр (Time Domain Reflectometer) → test point spacing ≤ 50 mm → deviation ≤ ±3% (high-speed signals).Signal integrity testing:
Oscilloscope (bandwidth ≥ 3× signal frequency) → eye diagram meets specifications
(eye height ≥ 0.5 V., eye width ≥ 0.5 UI).
Physical Inspection (Sub-steps)
Рентгеновский осмотр:
Layer-to-layer alignment deviation ≤ ±15 μm; no blind/buried via offset.Micro-section analysis:
Via wall copper thickness ≥ 20 мкм; no voids or cracks.Surface finish inspection:
ENIG gold thickness 0.05–0.1 μm; OSP layer free of oxidation.
Тестирование надежности (Sub-steps)
Thermal cycling test:
−40 °C to 125 ° C., 1000 cycles → no solder joint cracking.Damp heat aging test:
85 ° C. / 85% относительной влажности, 1000 hours → insulation resistance ≥ 10¹⁰ Ω.Vibration test:
10–2000 Hz / 10 глин, 6 hours → no structural damage.
Non-Conformance Handling Process
Electrical test failure:
Investigate routing or via metallization issues → redesign and re-verify.Reliability test failure:
Optimize materials (НАПРИМЕР., high-Tg laminates) or structure (НАПРИМЕР., enhanced thermal design) → retest.
Final Deliverables
Electrical Test Report
Physical Inspection Report
Reliability Test Report
Mass Production Design Package
(Гербер + IPC-2581 + Категория + test specifications)
Process Closure Standard:
All tests passed, production files complete, and manufacturer capable of stable mass production according to documentation.
Key Control Points and Deliverables in the HDI PCB Design Process
| Process Stage | Core Deliverables | Gate Criteria | Common Issue Handling Methods |
|---|---|---|---|
| Requirements Analysis | SOR (Statement of Requirements), Manufacturer Process Capability Confirmation | Requirements clearly defined with no ambiguity; manufacturing feasibility confirmed | Vague requirements → organize a three-party review (продукт / hardware / производитель) |
| Stack-Up Design | Stack-up structure diagram, impedance simulation report | Impedance deviation ≤ ±3%; blind/buried vias compliant | Impedance out of spec → adjust dielectric thickness or Dk values |
| Размещение компонентов | Placement layout, thermal simulation report | Thermal simulation ≤ 85 ° C.; zero critical DRC violations | Hot spots exceed limit → add thermal vias or reposition components |
| Drilling Design | Via distribution diagram, via quality inspection report | No voids in via walls; hole diameters meet specifications | Via conflicts → replan blind/buried via routing paths |
| Проектирование маршрутизации | Routing layout, signal integrity (И) simulation report | Eye diagram compliant; zero critical DRC violations | Excessive signal loss → optimize routing or switch to low-Df materials |
| DFM Verification | DFM review report, corrective design files | Manufacturer approval obtained; zero manufacturing risks | Manufacturing violations → revise design per manufacturer feedback |
| Surface Finish Selection | Surface finish specification document | Process matches application requirements | Unsupported process → switch to alternative surface finish |
| Тестирование & Валидация | Full test reports, mass production file package | All tests passed; documentation complete | Test failure → identify root cause (дизайн / процесс) → corrective action and re-test |
Заключение
HDI PCB design is a highly integrated engineering activity that involves system architecture, электрические характеристики, производственные процессы, и контроль затрат. Through a scientific design workflow, well-planned HDI structure selection, and close collaboration with PCB manufacturers, designers can significantly improve design success rates and overall product reliability.
From a technical content marketing perspective, systematic, in-depth, and engineering-oriented HDI PCB design process content is more likely to gain long-term recognition from both search engines and professional audiences.








