Подробное объяснение процесса проектирования печатной платы HDI

Подробное объяснение процесса проектирования печатной платы HDI

HDI печатная плата (High Density Interconnect printed circuit board) is a key enabling technology for achieving miniaturization, высокая производительность, and high reliability in modern high-end electronic products. As chip I/O counts continue to increase and signal speeds keep rising, traditional PCBs are gradually becoming insufficient in terms of routing density, signal integrity, and package compatibility. HDI-платы, through the use of microvias, слепые переходы, скрытые переходные отверстия, and multi-step lamination structures, provide a more optimized solution for complex circuit designs.

The design of HDI PCBs is not simply a matter of “reducing trace width and increasing layer count,” but rather a systematic engineering process that spans system architecture, электрические характеристики, производственные процессы, и контроль затрат. This article provides a step-by-step, detailed, and engineering-oriented explanation of the HDI PCB design process, making it suitable for use as a technical blog, corporate website technical documentation, or in-depth SEO content.

HDI PCB Overview and Technical Background

1. Definition of HDI PCB

HDI PCB refers to a multilayer printed circuit board that achieves high-density interconnection by using laser-drilled microvias and employing blind vias, скрытые переходные отверстия, and multiple lamination processes. Its fundamental objective is to:

achieve more component interconnections, shorter signal paths, and more stable electrical performance within a limited PCB area.

2. Typical Application Scenarios of HDI PCB

  • Smartphones and tablet computers

  • Wearable devices

  • Автомобильная электроника (АДАС, БМС, intelligent cockpit systems)

  • Medical electronics and high-reliability equipment

  • Communication and high-speed computing equipment

3. Fundamental Differences Between HDI PCB and Traditional PCB

ЭлементTraditional PCBHDI печатная плата
Interconnection methodMainly through-holesМикроотверстия, слепые переходы, скрытые переходные отверстия
Routing densityMedium to lowExtremely high
Signal path lengthLongerShorter
Supported packagesМлн, low I/O BGAHigh I/O BGA, CSP, Flip-Chip

Detailed Breakdown of the Complete HDI PCB Design Process

1. Requirement Analysis and Pre-Design Preparation

Core Objective

Convert abstract requirements into actionable design specifications and confirm manufacturing feasibility.

Detailed Execution Process

Requirement Investigation (Sub-Steps)

  • Confirmation with Product Team:
    Сценарии применения (потребительская электроника / медицинский / промышленный), операционная среда (температура / влажность / вибрация), product lifecycle (≥5 years requires enhanced reliability)

  • Confirmation with Hardware Engineers:
    Core IC models (НАПРИМЕР., BGA package parameters), power architecture (уровни напряжения / current requirements), signal types (высокоскоростной / analog / цифровой)

  • Preliminary Communication with PCB Manufacturer:
    Confirm manufacturing limits (minimum laser via diameter / maximum layer count / impedance control capability)

Requirement Document (SOR) Подготовка (Deliverable)

Core Document ModuleMandatory ContentExample Specification
Electrical ParametersSignal frequency, требования к импедансу, current thresholdsHigh-speed signal: PCIE 4.0 (16 Gbps), single-ended 50 Ω ±3%
Physical ParametersBoard size, толщина, weight limitsBoard size: 120 × 80 мм, толщина: 1.6 мм (±0.1 mm)
Reliability RequirementsTemperature/humidity range, vibration ratingРабочая температура: –40 °C to 85 ° C., вибрация: 10–2000 Hz / 10 глин
Manufacturing ConstraintsManufacturer process limits, cost budgetCost limit: 150 RMB / board, laser via ≥0.1 mm supported

Tools and Resource Preparation (Sub-Steps)

  • Design Software Setup:
    Install corresponding plugins (Altium → HDI Toolkit; Cadence → Microvia Optimizer), import manufacturer process libraries (IPC-2226A standard templates)

  • Reference Material Collection:
    Core IC datasheets (focus on package pinout and power requirements), manufacturer process specifications (laser drilling parameters / lamination process), отраслевые стандарты (IPC-6012E)

  • Process Gate Decision:
    Proceed to the next step only after SOR document approval and manufacturer process feasibility confirmation (manufacturer must issue a Process Compatibility Confirmation Letter).

2. Stack-Up Design

Stack-Up Design

Core Objective

Define layer structure, blind/buried via distribution, and impedance control strategy to enable subsequent routing.

Detailed Execution Process

Stack-Up Layer Count Determination (Sub-Steps)

  • Signal Layer Estimation:
    Calculate required signal layers based on critical signals (высокоскоростной / differential).
    Follow the principle: one signal layer corresponds to one reference layer.
    Пример: 8 PCIE 4.0 differential pairs → 4 signal layers + 4 reference layers = 8 слои

  • Power/Ground Layer Allocation:
    Divide by voltage domains (НАПРИМЕР., 3.3 V. / 1.8 V. / core voltage).
    Each major voltage domain requires at least one power layer and one adjacent ground layer.

  • Blind/Buried Via Layer Matching:
    If blind vias are required for “Top → L2” and “L7 → Bottom”, and buried vias for “L3 → L6”, the stack-up must be:
    Вершина (S1) – L2 (S2) – L3 (P1) – L4 (G1) – L5 (G2) – L6 (P2) – L7 (S3) – Bottom (S4)

Stack-Up Parameter Design (Sub-Steps)

  • Layer Thickness Allocation:
    Standard combination: signal layer 0.07 мм + dielectric 0.1 мм + power layer 0.1 мм
    Example total thickness 1.6 мм:
    0.07 × 4 + 0.1 × 3 + 0.1 × 1 = 1.6 мм

  • Impedance Simulation and Validation:
    Use Ansys SIwave, input layer thickness and Dk values, simulate single-ended and differential impedance.
    Adjust dielectric thickness if impedance deviates (НАПРИМЕР., increase dielectric thickness if impedance is too low).

  • Blind/Buried Via Path Planning:
    Draw via connection diagrams (НАПРИМЕР., S1→S2 blind via, S3→S4 blind via, L3→L6 buried via) to avoid via overlap.

Stack-Up Design Deliverables

  • Stack-up structure drawing (layer thickness / материалы / via types)

  • Impedance simulation report

  • Blind/buried via distribution table

Process Gate Criteria:
Impedance error ≤ ±3%, blind/buried via aspect ratio ≤ 0.75:1, layer-to-layer alignment meets manufacturer requirements (within ±25 μm).

3. Component Selection and Placement Design

Component Selection and Placement Design

Component Selection and Placement Design

ution Process (Placement Order)

Component Selection Confirmation (Pre-Step)

  • Package Priority:
    Prefer 0201 / 01005 пакеты (confirm SMT capability); core ICs prioritize BGA/CSP packages to reduce footprint.

  • Material Compatibility Check:
    Confirm pin pitch (≥0.4 mm for routing feasibility), power dissipation (≤2 W per component; higher requires thermal design).

Placement Execution Steps

  • Fix Core Components:
    Place CPU/GPU/FPGA at board center. Reserve thermal space per datasheet (≥4 thermal vias under BGA).

  • Place Power Components:
    Input filter capacitors (10 µF + 0.1 µF) within ≤3 mm of IC power pins.
    PMIC placed close to core IC to minimize power path length.

  • Signal Zoning:

    • High-frequency area (≥5 GHz): near board edge, isolated from power area, enclosed by metal shielding (ground pin spacing ≤5 mm)

    • Analog area (ADC/DAC): isolated zone, ≥3 mm from digital area

    • Interface area (USB/HDMI): close to board edge, connector edge ≥5 mm from board edge

  • Peripheral Component Adjustment:
    Passive components placed close to corresponding IC pins (signal path ≤5 mm), avoid cross-zone placement.

Placement Optimization and Verification

  • Thermal Simulation:
    Use Flotherm; hotspot temperature ≤85 °C (otherwise add thermal vias or adjust spacing).

  • Placement DRC Checks:

    • Component spacing ≥0.3 mm (power components ≥1 mm)

    • Clear polarity markings

    • BGA clearance ≥1 mm for rework

Placement Deliverables

  • Component placement drawing

  • Thermal simulation report

  • Placement DRC report

Process Gate Criteria:
No thermal violations, zero critical DRC errors, manufacturer pre-review approval.

4. Laser Drilling and Via Metallization Design

Laser Drilling and Via Metallization Design

Detailed Execution Process

Drilling Scheme Design

  • Define via types (blind / buried / через), generate via distribution map (diameter / depth / connected layers).

  • Match laser parameters based on base material and confirm manufacturer capability.

Via TypeDiameter (мкм)Layer ConnectionLaser Parameters (FR-4)Drilling Sequence
Top blind via80–100S1 → L235 W., 70 кГцBlind → buried → through
Bottom blind via80–100L7 → S435 W., 70 кГц
Buried via150–200L3 → L640 W., 80 кГц
Thermal through via300–500S1 → S450 W., 60 кГц
  • Via Clearance Rules:
    Via center ≥0.3 mm from pad edge, ≥0.2 mm from solder mask opening, no via overlap.

Via Metallization Process

  • Plasma desmear (1000 W., 60 с) → chemical micro-etch

  • Electroless copper: 28 ° C., 18 мин, thickness ≥0.5 µm

  • Гальваника: 2.5 A/dm², 75 мин, final copper thickness ≥20 µm

  • Качественная проверка: Рентген (no voids/cracks), micro-section copper coverage ≥95%

Process Gate Criteria:
No via conflicts, metallization parameters compliant, inspection passed.

5. Проектирование маршрутизации

Проектирование маршрутизации

Проектирование маршрутизации

Detailed Execution Flow (by Routing Priority)

Pre-Routing Preparation (Sub-Steps)

  • Set Routing Rules:
    Trace width / интервал (minimum 2 мил / 2 мил), impedance values (single-ended 50 Ой / differential 100 Ой), differential pair length mismatch ≤ 3 мм.

  • Assign Routing Layers:
    High-speed signals → outer/inner layers adjacent to reference planes;
    Power routing → power layers;
    Low-speed signals → remaining layers.


Routing Execution (Sub-Steps)

  • Power Routing:
    Calculate trace width based on current (I = 0.01 × A).
    Пример: 3 A current → 1.5 mm trace width (35 μm copper).
    Power layers split to isolate different voltage domains (isolation gap ≥ 2 мм).

  • High-Speed Signal Routing (Highest Priority):

    • Дифференциальные пары: trace width = spacing (0.2 мм / 0.2 мм), parallel routing → use serpentine compensation for length mismatch (bend radius ≥ 5 × trace width).

    • Via handling: back-drill high-speed signal vias to remove stubs ≥ 1 мм, avoiding multi-layer via traversal.

    • Topology: PCIE / USB high-speed signals use Fly-by topology; branch length ≤ 30 мм.

  • Analog Signal Routing:
    Routed separately, ≥3 mm from digital signals; use shielding traces (ground surrounding).

  • Low-Speed Signal Routing:
    Fill remaining space, avoid parallel runs with high-speed signals (spacing ≥ 2 мм).


Ground System Design (Executed in Parallel)

  • Digital Ground: continuous ground plane covering digital region.

  • Analog Ground: separate plane, single-point connection to digital ground at power entry.

  • High-Frequency Ground: mesh ground, grid spacing ≤ λ/20, where λ = speed of light / signal frequency.


Routing Optimization and Verification (Sub-Steps)

  • Signal Integrity Simulation:
    Use Cadence Sigrity to simulate eye diagrams (eye height ≥ 0.5 V., eye width ≥ 0.5 UI).

  • Routing DRC Check:
    Ensure no trace width/spacing violations, no impedance discontinuities, no ground loops.


Routing Deliverables

  • Routing Layout (Гербер / CAD)

  • Signal Integrity Simulation Report

  • Routing DRC Report

Process Gate Criteria:
Simulation results meet specifications, zero critical DRC errors, and no impedance discontinuities in high-speed signals → proceed to DFM verification.

6. DFM (Дизайн для технологичности) Verification

(Process Safeguard: Preventing Design Rework)

Detailed Execution Flow (in Inspection Sequence)

Design Self-Check (Sub-steps)

Open the DFM tools in the PCB design software (Altium DFM / Cadence DFM Check) → select inspection items (as shown in the table below) → generate a self-check report.

Inspection CategorySpecific Check ItemsКритерии приемкиCorrective Actions
Дизайн колодкиPad size, интервал, solder mask openingPad ≥ 0.25 мм; solder mask opening = pad + 0.2 ммAdjust pad size / solder mask opening
Через дизайнVia spacing, размер отверстия, solder mask coverageVia spacing ≥ 0.3 мм; solder mask coverage on via edge ≥ 0.1 ммAdjust via location / размер отверстия
Silkscreen DesignШирина линии, distance to padsLine width ≥ 0.15 мм; distance to pad ≥ 0.2 ммMove silkscreen / increase line width
Board Edge DesignCopper keep-out, tooling hole positionCopper keep-out ≥ 0.5 мм; tooling hole ≥ 5 mm from board edgeIncrease keep-out area / adjust tooling holes

Manufacturer Pre-Review (Sub-steps)

  • File submission:
    Gerber X2 + IPC-2581 + drill table + BOM → manufacturer issues a DFM Review Report.

  • Issue correction:
    Modify the design according to manufacturer feedback
    (НАПРИМЕР., laser vias smaller than capability → adjust to manufacturer-supported minimum diameter).

Final Verification (Sub-steps)

  • Secondary self-check:
    Re-run DFM tools after revisions → zero violations.

  • Prototype build validation:
    Small-batch prototyping (recommended 5–10 boards) → verify solderability and signal performance.

DFM Deliverables

  • DFM Self-Check Report

  • Manufacturer DFM Review Report

  • Revised Design Files

Process Gate Criterion:
Manufacturer approval obtained, no manufacturability-blocking issues, prototype yield ≥ 90% → proceed to surface finish selection.

7. Surface Finish Selection and Design

(Final Process Stage: Impacts Soldering Reliability & Service Life)

Detailed Execution Flow

Surface Finish Process Selection (Sub-steps)

Select based on application requirements (reference decision logic):

  • Cost-sensitive: Оп (потребительская электроника)

  • High-frequency applications: Погружение серебро / Enepic (базовые станции, маршрутизаторы)

  • Multiple reflow cycles: Соглашаться / Enepic (медицинский, промышленный)

  • Harsh environments: Enepic (военный, аэрокосмическая)

Confirm manufacturer capability, например:

  • ENIG gold thickness: 0.05–0.1 μm

  • OSP thickness: 0.2–0.5 μm

Surface Finish Design Requirements (Sub-steps)

  • Pad coverage:
    All soldering pads must be fully covered by surface finish; test points are recommended to be finished for probing reliability.

  • Board edge handling:
    Copper-free areas along the board edge should not receive surface finish to prevent edge lifting.

Process Gate Criterion:
Surface finish matches application requirements and is manufacturable → proceed to testing and validation.

8. Testing and Validation Process

Testing and Validation Process

Testing and Validation Process

Detailed Execution Flow (in Test Sequence)

Электрические испытания (Sub-steps)

  • Open/short testing:
    Flying probe tester (accuracy ±0.01 mm) → 100% покрытие (IPC-9262) → no opens or shorts.

  • Impedance testing:
    Тр (Time Domain Reflectometer) → test point spacing ≤ 50 mm → deviation ≤ ±3% (high-speed signals).

  • Signal integrity testing:
    Oscilloscope (bandwidth ≥ 3× signal frequency) → eye diagram meets specifications
    (eye height ≥ 0.5 V., eye width ≥ 0.5 UI).

Physical Inspection (Sub-steps)

  • Рентгеновский осмотр:
    Layer-to-layer alignment deviation ≤ ±15 μm; no blind/buried via offset.

  • Micro-section analysis:
    Via wall copper thickness ≥ 20 мкм; no voids or cracks.

  • Surface finish inspection:
    ENIG gold thickness 0.05–0.1 μm; OSP layer free of oxidation.


Тестирование надежности (Sub-steps)

  • Thermal cycling test:
    −40 °C to 125 ° C., 1000 cycles → no solder joint cracking.

  • Damp heat aging test:
    85 ° C. / 85% относительной влажности, 1000 hours → insulation resistance ≥ 10¹⁰ Ω.

  • Vibration test:
    10–2000 Hz / 10 глин, 6 hours → no structural damage.

Non-Conformance Handling Process

  • Electrical test failure:
    Investigate routing or via metallization issues → redesign and re-verify.

  • Reliability test failure:
    Optimize materials (НАПРИМЕР., high-Tg laminates) or structure (НАПРИМЕР., enhanced thermal design) → retest.

Final Deliverables

  • Electrical Test Report

  • Physical Inspection Report

  • Reliability Test Report

  • Mass Production Design Package
    (Гербер + IPC-2581 + Категория + test specifications)

Process Closure Standard:
All tests passed, production files complete, and manufacturer capable of stable mass production according to documentation.

Key Control Points and Deliverables in the HDI PCB Design Process

Process StageCore DeliverablesGate CriteriaCommon Issue Handling Methods
Requirements AnalysisSOR (Statement of Requirements), Manufacturer Process Capability ConfirmationRequirements clearly defined with no ambiguity; manufacturing feasibility confirmedVague requirements → organize a three-party review (продукт / hardware / производитель)
Stack-Up DesignStack-up structure diagram, impedance simulation reportImpedance deviation ≤ ±3%; blind/buried vias compliantImpedance out of spec → adjust dielectric thickness or Dk values
Размещение компонентовPlacement layout, thermal simulation reportThermal simulation ≤ 85 ° C.; zero critical DRC violationsHot spots exceed limit → add thermal vias or reposition components
Drilling DesignVia distribution diagram, via quality inspection reportNo voids in via walls; hole diameters meet specificationsVia conflicts → replan blind/buried via routing paths
Проектирование маршрутизацииRouting layout, signal integrity (И) simulation reportEye diagram compliant; zero critical DRC violationsExcessive signal loss → optimize routing or switch to low-Df materials
DFM VerificationDFM review report, corrective design filesManufacturer approval obtained; zero manufacturing risksManufacturing violations → revise design per manufacturer feedback
Surface Finish SelectionSurface finish specification documentProcess matches application requirementsUnsupported process → switch to alternative surface finish
Тестирование & ВалидацияFull test reports, mass production file packageAll tests passed; documentation complete

Test failure → identify root cause (дизайн / процесс) → corrective

action and re-test

Заключение

HDI PCB design is a highly integrated engineering activity that involves system architecture, электрические характеристики, производственные процессы, и контроль затрат. Through a scientific design workflow, well-planned HDI structure selection, and close collaboration with PCB manufacturers, designers can significantly improve design success rates and overall product reliability.

From a technical content marketing perspective, systematic, in-depth, and engineering-oriented HDI PCB design process content is more likely to gain long-term recognition from both search engines and professional audiences.