What is the difference between breadboard and pcb board?

What is a breadboard?

Experimental PCB boards are mainly used in stages of circuit design, testing and functional verification to help engineers verify the correctness and reliability of circuit design during product development. They are usually bare boards, that is, the circuit board without components, so that engineers can add the required components to set up circuit construction and testing.

Breadboard has a wide range of applications in the fields of electronic engineering, communication, computer and other fields, and is an indispensable part of circuit design and product development. By using Breadboard, engineers can design and optimize the circuit more efficiently to improve the quality and performance of the product.

How does Breadboard work?

The circuit Breadboard, its working principle is mainly based on its unique structure and design. There are many jacks on the bread plate. These jacks are actually column connection sockets for fixing and connecting electronic components to form circuits.

Breadboard are usually divided into two independent parts. The first part is two rows of jacks separated by the red and blue lines on the left and right sides. The red is used to connect the positive pole of the power supply and blue is used for ground (GND). Each row of jacks are connected inside, so that users can connect the positive and negative poles of the power supply.

The second part is the middle jack area. These jacks are divided into left 5 and 5, and a total of 10 lines are identified as A, B, C, D, E, etc. The five jacks in each row are connected inside, which provides users with a convenient platform that can connect electronic components on it and connect to the power supply and grounding next to build the required circuit.

When setting a circuit on Breadboard, users can insert electronic components (such as resistance, capacitors, diode, integrated circuits, etc.) into the corresponding jump according to the needs of the circuit, and Connect with power and ground. In this way, a complete circuit can be formed to test, verify or demonstrate the functions and performance of the circuit.

When do I use Breadboard?

Breadboard is usually used in the following situations:

1. Circuit design and test: In the early stage of circuit design, engineers need to use Breadboard to build and test circuits. Through the actual construction of the circuit and observing its operating effect, engineers can verify the correctness and reliability of the circuit design, and timely discover and modify the problems in the design in time.

2. Functional verification and debugging: Breadboard is an important tool for verifying circuit functions. Engineers can build specific circuits on Breadboard to test specific functions or performance. In addition, Breadboard can also be used for debugging to help engineers position and solve the failure or problem in the circuit.

3. Learning and education: Breadboard plays an important role in professional teaching and learning in electronic engineering, communication, computer and other professional. Students can deepen their understanding of circuit principles, electronic components, and circuits by setting up and testing circuits on Breadboard to enhance their practical ability.

4. Prototype production and product development: During the product development stage, Breadboard can be used to make circuit prototypes. Engineers can quickly build and test the prototype of the circuit on Breadboard to verify whether their functions and performance meet the design requirements. This helps shorten the product development cycle and improves development efficiency.

5. Scientific research and experiments: In the field of scientific research, Breadboard is often used to build experimental circuits to study the performance, behavior, or characteristics of electronic components, circuits or systems.

The advantage of Breadboard

The advantages of breadboard:

▶You can rapidly change connections and test various plans in a development phase.

▶It’s easy and fast to assemble as there are no permanent solder connections.

▶You can also change various components such as the capacitor or resistor value.

▶You can add an ammeter anywhere with shifting wires (breaking into) any branch of your circuit. What’s more, the current measurement on PCBs require you to break tracks or add extra resistors in your design.

The difference between Breadboard and PCB

Difference 1: Breadboard can change components and PCB can’t because its connections are permanent.
The great difference between the breadboard and PCB is that the breadboard doesn’t have to be soldered because its components can be either changed or removed. Does this mean the breadboard is better than PCB in this regard? No way. You can’t say which is better because they meet different demands.

One point where the breadboard wins is that it has designed slots, which let you plug components that can be changed later. However, the PCB parts are surface-mounted and/or through-hole mounted on a circuit board, which is a permanent project.

Note
If you want to change the PCB’s component, you have to use soldering, but this can affect the board’s performance. So before you have your PCBs manufactured, remember to check your design carefully.
One point where the PCB wins is obvious. Try shaking the breadboard upside down. You will wish its connections were permanent.

Difference 2: breadboards are used in the development phase, and printed circuit boards are used for the end products.
Breadboards are used to test circuits because they are cheaper and you can change their components and test different scenarios. You can buy breadboards easily.

However, PCBs used for end products are customized. Before you have them manufactured, you need to generate Gerber files from schematics, and schematics come from your design. Once PCBs are designed, for a better effect, let a reliable one-stop PCB company manufacture and assemble them. When you get the PCB assemblies, you get end products.

Difference 3: PCBs have better carrying capacity than breadboards.
A printed circuit board has a significantly better current carrying capacity compared to a breadboard because its traces can be much wider for more current to run through. Breadboards provide the minimum current capacity to the circuits because the components are connected by wires. Besides, terminals can be added to your PCB to add external connections but can’t to breadboards.

Difference 4: PCBs are much more complex than breadboards.
Compared to PCBs, breadboards have a simple structure. The breadboard consists of distribution buses and groups of holes. A specific channel runs between the two rows, which creates an environment for the chip with pins you can place in there. You can place one or two power distribution buses on the side of the breadboard for grounding and running power.

Different PCBs have different structures, and even the simplest single-layer PCBs have a more complex structure than breadboards. The most basic PCB structure contains four layers – a PCB substrate, a copper layer, a solder mask, and silkscreen/legends. The connection is wireless because the copper traces are placed on the board.