Why Does PCB Bubbling Occur? How to Solve It?

Why Does PCB Bubbling Occur? How to Solve It?

In the field of electronic manufacturing, the PCB, known as the “mother of electronic components,” directly determines the reliability and service life of end products. PCB bubbling is regarded as an “invisible killer” during production and usage—mild cases lead to poor circuit contact and obstructed signal transmission, while severe cases may cause short circuits and burn-outs, resulting in significant rework costs and brand losses for enterprises. Whether you are an engineer in an SMT workshop or a procurement manager of electronic equipment, this tricky problem is unavoidable. Today, we will break down the core logic of PCB bubbling from three perspectives—“What it is, why it happens, and what to do about it”—and provide a practical set of solutions.

Forms of PCB Bubbling

PCB bubbling is not a single phenomenon. Depending on the bubbling location, shape, and formation stage, it can be categorized into various types. Accurate identification is the foundation for effective problem-solving.

1. Classified by Bubbling Location

  • Bubbling between substrate and copper foil:
    The most common type. It appears as a hollow bulge between the copper foil and the substrate (such as FR-4). Pressing with fingers gives slight elasticity. In severe cases, the copper foil detaches with the bulge, directly damaging circuit continuity.

  • Solder mask bubbling:
    The solder mask ink separates from the substrate or copper surface, forming transparent or yellowish bulges. This affects insulation performance and causes surface defects that cannot pass customer visual inspection.

  • Pad bubbling:
    Localized bulges on pad areas, usually occurring after soldering, leading to weak or false solder joints—one of the main causes of later product failures.

  • Internal bubbling in multilayer boards:
    Hidden inside multilayer PCBs and difficult to detect early. They typically appear during high-temperature operation or reliability testing. Repair is extremely difficult and generally results in PCB scrap.

2. Classified by Formation Stage

  • Bubbling during production:
    Occurs directly during processes such as lamination, curing, or soldering, mostly related to process parameters or material quality. Damage can be stopped in time.

  • Bubbling during storage/transportation:
    Occurs after PCB fabrication due to poor storage environments or transport vibration—often overlooked but very costly.

  • Bubbling during end-use:
    Appears during product operation under heat, humidity, or vibration, causing direct product failure and serious brand damage.

Core Causes of PCB Bubbling

Although PCB bubbling appears to be a “surface problem,” it is in fact the concentrated outbreak of issues related to raw materials, manufacturing processes, and environmental control. Only by identifying the root cause can the issue be solved precisely.

1. Raw Materials: “Innate Defects” as the Root Hazard

  • Substrate quality issues:
    Resin content, moisture content, and heat resistance of substrates like FR-4 are critical.

    • Low resin content → insufficient adhesion

    • Excessive moisture (usually ≤0.05% required) → vaporizes under heat and pushes up copper foil or solder mask

    • Poor heat resistance → softens or decomposes during soldering, losing adhesion

  • Copper foil problems:
    Poor roughness, adhesion, or surface contamination/oxidation reduce bond strength. Under heat, separation occurs easily. Electrolytic copper foil with inadequate surface treatment is even more prone to bubbling.

  • Solder mask ink defects:
    Poor adhesion or heat resistance, or moisture absorption during storage, prevents proper bonding after printing. Incorrect mixing ratios (e.g., hardener amounts) lead to incomplete curing and bubbling risk.

2. Manufacturing Process: “Operation Deviations” as the Direct Driver

(1) Pre-treatment: Insufficient cleaning → no adhesion foundation
Oil stains, oxidation, or dust on PCB surfaces block bonding.

  • Oxidized copper forms a loose oxide layer preventing resin adhesion

  • Dust on substrate creates “barriers,” causing localized solder mask bulging

(2) Lamination: Parameter miscontrol → weak interlayer bonding
Precise control of temperature, pressure, and time is essential.

  • Too low temperature: resin can’t flow or fill gaps

  • Too high temperature: resin decomposes

  • Insufficient pressure: air trapped inside forms bubbles

  • Excess pressure: resin squeezed out, reducing bonding area

  • Improper curing time: too short → incomplete cure; too long → resin aging

(3) Solder mask printing/curing: Poor processing → hidden risks

  • Uneven squeegee pressure or excessive speed → uneven thickness, bubbles

  • Insufficient pre-bake → solvent not fully evaporated → bubbles during curing

  • Improper curing temperature/time → incomplete cross-linking, weak adhesion

  • Rapid temperature changes → thermal stress → later bubbling

(4) Soldering: High-temp shock triggers weak points
SMT reflow or wave soldering at 200–260°C stresses PCB materials.
Weak bonding areas expand and separate from thermal expansion mismatch, forming bubbles. Over-temperature or long dwell time worsens resin decomposition.

3. Environment & Storage: Poor “Post-Care” Causes Delayed Issues

PCBs require strict temperature/humidity control (ideal: 20–25°C, 40–60% RH).
Moisture absorption, thermal cycling, or poor packaging during transportation lead to bubbling.

4. Design Defects: Hidden “Innate Loopholes”

Design flaws may cause bubbling, including:

  • Large copper areas without thermal relief → overheating during soldering

  • Overlapping inner-layer copper → trapped air during lamination

  • Poor solder mask–copper edge transitions → easier delamination

Solutions for PCB Bubbling in Different Scenarios

1. Bubbling During Production: Stop Loss Quickly, Optimize Processes

  • Substrate–copper foil bubbling:

    • Check moisture content (via baking test)

    • Replace defective materials

    • Recalibrate lamination parameters

    • Light bubbling → secondary lamination; severe → scrap

  • Solder mask bubbling:

    • Before curing: remove ink → re-treat surface → re-print → cure properly

    • After curing: small areas → repair; large areas → rework + root cause analysis

  • Soldering bubbling:

    • Pause soldering

    • Check temperature profile

    • Reduce temperature/dwell time

    • Pre-bake moisture-absorbed PCBs

2. Bubbling During Storage/Transport: Improve Environment, Strengthen Protection

  • Bake bubbled PCBs (50–60°C for 2–4 hours) and inspect.

  • Enhance storage humidity control systems.

  • Use vacuum packaging + desiccants.

  • Improve anti-vibration and moisture protection during transport.

3. Bubbling During End-Use: Trace the Root Cause, Rectify Fully

  • Recall affected products

  • Analyze bubbling location and cause

  • If raw materials → change suppliers

  • If process → inspect parameters, retrain operators

  • If design → redistribute layouts or add thermal structures

  • Build customer feedback loop to track improvement results

4. General Repair Techniques: Emergency Fix for Small-Area Bubbles

Suitable only for non-critical areas:

  1. Carefully cut open the bubble surface

  2. Clean with anhydrous alcohol

  3. Apply PCB repair adhesive

  4. Cure in an oven per adhesive specs
    Large or critical-area bubbling still requires scrapping.

PCB Bubbling

How to Repair PCB Bubbling?

Delamination in a PCB refers to the separation between different layers of the printed circuit board, which can lead to electrical connection issues. Below are the general steps and tools typically used for repairing bubbles or delamination in PCB laminates:

Tools:

  • Microscope: Used to inspect delaminated areas and for precision work.

  • Scalpel or X-Acto knife: Used to carefully remove damaged areas.

  • Fine sandpaper or abrasive pads: Used to clean and roughen surfaces to improve adhesion.

  • Isopropyl alcohol or acetone: Used for surface cleaning and degreasing.

  • Soldering iron and solder: Used to rework any damaged traces or components.

  • Epoxy resin: Used to bond and fill delaminated areas.

  • Curing lamp or oven: Needed if the epoxy requires UV or heat curing.

How to Fix a Bubbled Laminate:

  1. Inspect the delamination:
    Use a microscope to carefully examine the delaminated area and assess the extent of the damage.

  2. Remove damaged areas:
    Use a scalpel or X-Acto knife to gently remove any delaminated or damaged portions of the PCB.

  3. Clean and prepare the surface:
    Use fine sandpaper or an abrasive pad to clean and roughen the area around the delamination.
    Clean the area thoroughly with isopropyl alcohol or acetone to ensure no contaminants remain.

  4. Apply epoxy resin:
    Carefully apply epoxy resin to the delaminated area, ensuring it fills the gaps and bonds the layers together. Use a microscope for precise application.

  5. Cure the epoxy:
    If necessary, cure the epoxy resin using a curing lamp or oven according to the manufacturer’s instructions.

  6. Rework components:
    If any components or traces were damaged during delamination, rework and repair them using a soldering iron.

  7. Inspect and test:
    After repair, inspect the area again under a microscope to ensure proper bonding and connection. Test the PCB’s functionality and electrical continuity.

It is worth noting that PCB delamination repair can be very tricky and may require advanced skills, especially when dealing with multilayer boards. If you lack professional expertise in PCB repair, it may be wise to seek professional assistance.

Comprehensive Prevention System for PCB Bubbling

Compared to post-repair, preventive measures greatly reduce cost and ensure quality. Establishing a full-process prevention system—from raw materials to production, storage, and usage—is the key to eliminating PCB bubbling.

1. Raw Material Control: Ensuring Quality at the Source

  • Establish a strict supplier qualification system, conducting audits and onsite inspections for suppliers of substrates, copper foil, solder mask inks, and other key materials. Prefer reputable suppliers with stable quality.

  • Conduct full incoming inspection before materials enter storage:

    • Substrates → moisture content, heat resistance, resin content

    • Copper foil → surface roughness, adhesion, oxidation status

    • Solder mask ink → adhesion, heat resistance, mixing stability
      Reject any unqualified materials.

  • Material storage must meet requirements:

    • Substrates and copper foil stored in dry warehouses to prevent moisture absorption

    • Solder mask ink sealed and kept away from heat and sunlight; regularly check for deterioration

2. Production Process Optimization: Standardized Operation, Precise Control

  • Standardized pre-treatment:
    Follow a complete “grinding–degreasing–acid cleaning–rinsing–drying” process to ensure surfaces are free from contamination and oxidation. After treatment, proceed to the next process within 4 hours to avoid re-contamination.

  • Precise lamination parameters:
    Create dedicated lamination curves for different PCB types (e.g., multilayer, thick copper), monitor temperature and pressure in real-time, regularly calibrate equipment to ensure stability.

  • Fine solder mask processing:
    Check ink condition before printing and mix precisely according to ratios. Control squeegee pressure and speed for uniform thickness. Follow pre-bake and curing requirements strictly. After curing, test ink adhesion (e.g., cross-hatch test).

  • Optimized soldering temperature profile:
    Define proper soldering profiles based on PCB heat resistance and component types to avoid thermal shock. Pre-bake PCBs stored for more than 7 days (60°C for 2 hours) to remove moisture.

3. Environmental & Storage Control: Ensuring Stability Throughout the Cycle

Establish constant-temperature and constant-humidity environments for production and storage, with real-time monitoring and alarms.
After production, PCBs should be vacuum-packed immediately with desiccants and humidity indicator cards, labeled with batch numbers and expiration dates.
During transportation, use protected logistics to avoid rain, pressure, and heavy vibration.

4. Design & Testing Enhancements: Preventing Risks in Advance

  • Design stage:
    Optimize PCB layout, avoid large concentrated copper areas, add thermal relief holes and channels. Ensure solder mask aligns with copper edges to reduce delamination risks. For multilayer boards, design internal traces to facilitate air release during lamination.

  • Test enhancements:
    Add checkpoints at critical production steps, such as:

    • Peel strength test after lamination

    • Adhesion and heat resistance test for solder mask after curing

    • High-temperature/high-humidity reliability testing before shipment

This helps identify potential hazards early.

Conclusion

PCB bubbling may seem complicated, but it is essentially a classic case where “details determine success or failure.” From every raw material parameter to each production setting, and every storage or transportation condition—any oversight can trigger problems. But by establishing a system of “source control, process optimization, and full-cycle prevention,” the risk of bubbling can be minimized.